
TACAS
Evaluation
Artifact

2020
Accepted

Learning One-Clock Timed Automata⋆

Jie An1(B) , Mingshuai Chen2,3,4 , Bohua Zhan3,4 ,
Naijun Zhan3,4(B) , and Miaomiao Zhang1(B)

1 School of Software Engineering, Tongji University, Shanghai, China
{1510796,miaomiao}@tongji.edu.cn

2 Lehrstuhl für Informatik 2, RWTH Aachen University, Aachen, Germany
chenms@cs.rwth-aachen.de

3 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China
{bzhan,znj}@ios.ac.cn

4 University of Chinese Academy of Sciences, Beijing, China

Abstract. We present an algorithm for active learning of deterministic timed au-
tomata with a single clock. The algorithm is within the framework of Angluin’s
L∗ algorithm and inspired by existing work on the active learning of symbolic
automata. Due to the need of guessing for each transition whether it resets the
clock, the algorithm is of exponential complexity in the size of the learned au-
tomata. Before presenting this algorithm, we propose a simpler version where the
teacher is assumed to be smart in the sense of being able to provide the reset
information. We show that this simpler setting yields a polynomial complexity of
the learning process. Both of the algorithms are implemented and evaluated on
a collection of randomly generated examples. We furthermore demonstrate the
simpler algorithm on the functional specification of the TCP protocol.

Keywords: Automaton learning · Active learning · One-clock timed automata ·
Timed language · Reset-logical-timed language.

1 Introduction

In her seminal work [10], Angluin introduced the L∗ algorithm for learning a regu-
lar language from queries and counterexamples within a query-answering framework.
The Angluin-style learning therefore is also termed active learning or query learning,
which is distinguished from passive learning, i.e., generating a model from a given data
set. Following this line of research, an increasing number of efficient active learning
methods (cf. [38]) have been proposed to learn, e.g., Mealy machines [34,30], I/O au-
tomata [2], register automata [25,1,15], nondeterministic finite automata [12], Büchi
automata [19,28], symbolic automata [29,18,11] and Markov decision processes [36],
to name just a few. Full-fledged libraries, tools and applications are also available for
automata-learning tasks [13,27,20,21].

⋆ This work has been partially funded by NSFC under grant No. 61625206, 61972284, 61732001
and 61872341, by the ERC Advanced Project FRAPPANT under grant No. 787914, and by
the CAS Pioneer Hundred Talents Program under grant No. Y9RC585036.

http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0001-5377-9351
http://orcid.org/0000-0003-3298-3817

2 J. An et al.

For real-time systems where timing constraints play a key role, however, learning
a formal model is much more complicated. As a classical model for real-time systems,
timed automata [4] have an infinite set of timed actions. This yields a fundamental
difference to finite automata featuring finite alphabets. Moreover, it is difficult to detect
resets of clock variables from observable behaviors of the system. This makes learning
formal models of timed systems a challenging yet interesting problem.

Various attempts have been carried out in the literature on learning timed models,
which can be classified into two tracks. The first track pursues active learning methods,
e.g. [22] for learning event-recording automata (ERA) [5] and [9] for learning real-
time automata (RTA) [17]. ERA are time automata where, for every untimed action a,
a clock is used to record the time of the last occurrence of a. The underlying learning
algorithm [22], however, is prohibitively complex due to too many degrees of freedom
and multiple clocks for recording events. RTA are a class of special timed automata
with one clock to record the execution time of each action by resetting at the starting.
The other track pursues passive learning. In [42,41], an algorithm was proposed to learn
deterministic RTA. The basic idea is that the learner organizes a tree sketching traces
of the data set while merging nodes of the tree following a certain heuristic function.
A passive learning algorithm for timed automata with one clock was further proposed
in [39,40]. A common weakness of passive learning methods is that the generated model
merely accepts all positive traces while it rejects all negative ones for the given set of
traces, without guaranteeing that it is a correct model of the target system. A theoretical
result was established in [40] showing it is possible to obtain the target system by con-
tinuously enriching the data set, however the number of iterations is unknown. In addi-
tion, the passive learning methods cited above concern only discrete-time semantics of
the underlying timed models, i.e., the clock takes values from non-negative integers. We
furthermore refer the readers to [14,32] for learning specialized forms of practical timed
systems in a passive manner, [37] for passively learning timed automata using genetic
programming which scales to automata of large sizes, [33] for learning probabilistic
real-time automata incorporating clustering techniques in machine learning, and [36]
for L∗-based learning of Markov decision processes with testing and sampling.

In this paper, we present the first active learning method for deterministic one-clock
timed automata (DOTAs) under continuous-time semantics1. Such timed automata pro-
vide simple models while preserving adequate expressiveness, and therefore have been
widely used in practical real-time systems [35,3,16]. We present our approach in two
steps. First, we describe a simpler algorithm, under the assumption that the teacher is
smart in the sense of being able to provide information about clock resets in member-
ship and equivalence queries. The basic idea is as follows. We define the reset-logical-
timed language of a DOTA and show that the timed languages of two DOTAs are equiv-
alent if their reset-logical-timed languages are equivalent, which reduces the learning
problem to that of learning a reset-logical-timed language.Then we show how to learn
the reset-logical-timed language following Maler and D’Antoni’s learning algorithms
for symbolic automata [29,18]. We claim the correctness, termination and polynomial
complexity of this learning algorithm. Next, we extend this algorithm to the case of a
normal teacher. The main difference is that the learner now needs to guess the reset

1 The proposed learning method applies trivially to discrete-time semantics too.

Learning One-Clock Timed Automata 3

information on transitions discovered in the observation table. Due to these guesses,
the latter algorithm features exponential complexity in the size of the learned automata.
The proposed learning methods are implemented and evaluated on randomly generated
examples. We also demonstrate the simpler, polynomial algorithm on a practical case
study concerning the functional specification of the TCP protocol. Detailed proofs for
theorems and lemmas in this paper can be found in Appendix A of the full version [7].

In what follows, Sect. 2 provides preliminary definitions on one-clock timed au-
tomata. The learning algorithm with a smart teacher is presented and analyzed in Sect. 3.
We then present the situation with a normal teacher in Sect. 4. The experimental results
are reported in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

Let R≥0 and N be the set of non-negative reals and natural numbers, respectively, and B
the Boolean set. We use ⊤ to stand for true and ⊥ for false. The projection of an n-tuple
x onto its first two components is denoted by Π{1,2}x, which extends to a sequence of
tuples as Π{1,2}(x1, . . . ,xk) =

(
Π{1,2}x1, . . . ,Π{1,2}xk

)
.

Timed automata [4], a kind of finite automata extended with a finite set of real-
valued clocks, are widely used to model real-time systems. In this paper, we consider
a subclass of timed automata with a single clock, termed one-clock timed automata
(OTAs). Let c be the clock variable, denote by Φc the set of clock constraints of the
form ϕ ::= ⊤ | c ▷◁ m | ϕ ∧ ϕ, where m ∈ N and ▷◁ ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automaton A = (Σ,Q,
q0, F, c,∆), where Σ is a finite set of actions, called the alphabet; Q is a finite set of
locations; q0 ∈ Q is the initial location; F ⊆ Q is a set of accepting locations; c is the
unique clock; and ∆ ⊆ Q×Σ × Φc × B×Q is a finite set of transitions.

A transition δ = (q, σ, ϕ, b, q′) allows a jump from the source location q to the
target location q′ by performing the action σ ∈ Σ if the constraint ϕ ∈ Φc is satisfied.
Meanwhile, clock c is reset to zero if b = ⊤, and remains unchanged otherwise.

A clock valuation is a function ν : c 7→ R≥0 that assigns a non-negative real number
to the clock. For t ∈ R≥0, let ν + t be the clock valuation with (ν + t)(c) = ν(c) + t.
According to the definitions of clock valuation and clock constraint, a transition guard
can be represented as an interval whose endpoints are in N∪{∞}. For example, ϕ1 : c <
5∧ c ≥ 3 is represented as [3, 5), ϕ2 : c = 6 as [6, 6], and ϕ3 : ⊤ as [0,∞). We will use
the inequality- and interval-representation interchangeably in this paper.

A state s of A is a pair (q, ν), where q ∈ Q and ν is a clock valuation. A run

ρ of A is a finite sequence ρ = (q0, ν0)
t1,σ1−−−→ (q1, ν1)

t2,σ2−−−→ · · · tn,σn−−−→ (qn, νn),
where ν0(c) = 0, ti ∈ R≥0 stands for the time delay spending on qi−1 before δi =
(qi−1, σi, ϕi, bi, qi) ∈ ∆ is taken, only if (1) νi−1+ti satisfies ϕi, (2) νi(c) = νi−1(c)+
ti if bi = ⊥, otherwise νi(c) = 0, for all 1 ≤ i ≤ n. A run ρ is accepting if qn ∈ F .

The trace of a run ρ is a timed word, denoted by trace(ρ). trace(ρ) = ϵ if ρ =

(q0, ν0), and trace(ρ) = (σ1, t1)(σ2, t2) · · · (σn, tn) if ρ = (q0, ν0)
t1,σ1−−−→ (q1, ν1)

t2,σ2−−−→
· · · tn,σn−−−→ (qn, νn). Since ti is the time delay on qi−1, for 1 ≤ i ≤ n, such a timed

4 J. An et al.

word is also called delay-timed word. The corresponding reset-delay-timed word can
be defined as tracer(ρ) = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn), where bi is the reset
indicator for δi, for 1 ≤ i ≤ n. If ρ is an accepting run of A, trace(ρ) is called an accept-
ing timed word. The recognized timed language of A is the set of accepting delay-timed
words, i.e., L(A) = {trace(ρ) | ρ is an accepting run of A}. The recognized reset-timed
language Lr(A) is defined as {tracer(ρ) | ρ is an accepting run of A}.

The delay-timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is observed outside, from
the view of the global clock. On the other hand, the behavior can also be observed
inside, from the view of the local clock. This results in a logical-timed word of the form
γ = (σ1, µ1)(σ2, µ2) · · · (σn, µn) with µi = ti if i = 1∨ bi−1 = ⊤ and µi = µi−1+ ti
otherwise. We will denote the mapping from delay-timed words to logical-timed words
above by Γ .

Similarly, we introduce reset-logical-timed word γr = (σ1, µ1, b1)(σ2, µ2, b2) · · ·
(σn, µn, bn) as the counterpart of ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) in terms
of the local clock. Without any substantial change, we can extend the mapping Γ to map
reset-delay-timed words to reset-logical-timed words. The recognized logical-timed
language of A is given as L(A) = {Γ (trace(ρ)) | ρ is an accepting run of A}, and
the recognized reset-logical-timed language of A as Lr(A) = {Γ (tracer(ρ)) | ρ is an
accepting run of A}.

An OTA is a deterministic one-clock timed automaton (DOTA) if there is at most
one run for a given delay-timed word. In other words, for any location q ∈ Q and action
σ ∈ Σ, the guards of transitions outgoing from q labelled with σ are disjoint subsets of
R≥0. We say a DOTA is complete if for any of its location q ∈ Q and action σ ∈ Σ,
the corresponding guards form a partition of R≥0. This means any given delay-timed
word has exactly one run. Any DOTA A can be transformed into a complete DOTA
(referred to as COTA) A accepting the same timed language as follows: (1) Augment Q
with a “sink” location qs which is not an accepting location; (2) For every q ∈ Q and
σ ∈ Σ, if there is no outgoing transition from q labelled with σ, introduce a (resetting)
transition from q to qs with label σ and guard [0,∞); (3) Otherwise, let S be the subset
of R≥0 not covered by the guards of transitions from q with label σ. Write S as a union
of intervals I1, . . . , Ik in a minimal way, then introduce a (resetting) transition from q
to qs with label σ and guard Ij for each 1 ≤ j ≤ k.

From now on, we therefore assume that we are working with COTAs.

Example 1. Fig. 1 depicts the transformation of a DOTA A (left part) into a COTA A
(right part). First, a non-accepting “sink” location qs is introduced. Second, we intro-
duce three fresh transitions (marked in blue) from q1 to qs as well as transitions from
qs to itself. At last, for location q0 and label a, the existing guards cover (1, 3), with
complement [0, 1] ∪ [3,∞). Hence, we introduce transitions (q0, a, [0, 1],⊤, qs) and
(q0, a, [3,∞),⊤, qs). Two fresh transitions from q1 to qs are introduced similarly.

3 Learning from a Smart Teacher

In this section, we consider the case of learning a COTA A with a smart teacher. Our
learning algorithm relies on the following reduction of the equivalence over timed lan-
guages to that of reset-logical timed languages.

Learning One-Clock Timed Automata 5

q0start q1
a, (1, 3), ⊥

b, [0,∞), ⊤ b, [2, 4),⊤

q0start q1

qs

a, (1, 3), ⊥

b, [0,∞), ⊤ b, [2, 4), ⊤

a, [0, 1], ⊤

a, [3,∞
), ⊤

a,
[0
,∞

),
⊤

b,
[0
, 2
),
⊤

b,
[4
,∞

),
⊤

a, [0,∞), ⊤ b, [0,∞), ⊤

Fig. 1: A DOTA A on the left and the corresponding COTA A on the right. The initial location is
indicated by ‘start’ and an accepting location is doubly circled.

Theorem 1. Given two DOTAs A and B, if Lr(A) = Lr(B), then L(A) = L(B).

Theorem 1 assures that Lr(H) = Lr(A) implies L(H) = L(A), that is, to construct
a COTA A that recognizes a target timed language L = L(A), it suffices to learn a hy-
pothesis H which recognizes the same reset-logical timed language. For equivalence
queries, instead of checking directly whether Lr(H) = Lr(A), the contraposition of
Theorem 1 guarantees that we can perform equivalence queries over their timed coun-
terparts: if L(H) = L(A), then H recognizes the target language already; otherwise, a
counterexample making L(H) ̸= L(A) yields an evidence also for Lr(H) ̸= Lr(A).

We now describe the behavior of the teacher who keeps an automaton A to be learnt,
while providing knowledge about the automaton by answering membership and equiv-
alence queries through an oracle she maintains. For the membership query, the teacher
receives a logical-timed word γ and returns whether γ is in L(A). In addition, she is
smart enough to return the reset-logical-timed word γr that corresponds to γ (the ex-
act correspondence is described in Sect. 3.1). For the equivalence query, the teacher is
given a hypothesis H and decides whether L(H) = L(A). If not, she is smart enough
to return a reset-delayed-timed word ωr as a counterexample. The usual case where a
teacher can deal with only standard delay-timed words will be discussed in Sect. 4.

Remark 1. The assumption that the teacher can respond with timed words coupled with
reset information is reasonable, in the sense that the learner can always infer and detect
the resets of the logical clock by referring to a global clock on the wall, as long as he can
observe running states of A, i.e., observing the clock valuation of the system whenever
an event happens therein. This conforms with the idea of combining automata learning
with white-box techniques, as exploited in [24], providing that in many application
scenarios source code is available for the analysis.

In what follows, we elaborate the learning procedure including membership queries,
hypotheses construction, equivalence queries and counterexample processing.

3.1 Membership query

In our setting, the oracle maintained by the smart teacher can be regarded as a COTA
A that recognizes the target timed language L, and thereby its logical-timed language
L(A) and reset-logical-timed counterpart Lr(A). In order to collect enough information

6 J. An et al.

for constructing a hypothesis, the learner makes membership queries as “Is the logical-
timed word γ in L(A)?”. If there does not exist a run ρ such that Γ (trace(ρ)) = γ,
meaning that there is some k such that the run is blocked after the k’th action (i.e.
γ is invalid) and hence the teacher gives a negative answer, associated with a reset-
logical-timed word γr where all bi’s with i > k are set to ⊤; If there exists a run ρ
(which is unique due to the determinacy of A) that admits γ (i.e., γ is valid), the teacher
answers “Yes”, if ρ is accepting, or “No” otherwise, while in both cases providing the
corresponding reset-logical-timed word γr, with Π{1,2}γr = γ.

For the sake of simplicity, we define a function π that maps a logical-timed word to
its unique reset-logical-timed counterpart in membership queries. Information gathered
from the membership queries is stored in a timed observation table defined as follows.

Definition 2 (Timed observation table). A timed observation table for a COTA A is a
7-tuple T = (Σ,Σ,Σr,S,R,E, f) where Σ is the finite alphabet; Σ = Σ × R≥0
is the infinite set of logical-timed actions; Σr = Σ × R≥0 × B is the infinite set of
reset-logical-timed actions; S,R ⊂ Σ∗r and E ⊂ Σ∗ are finite sets of words, where S
is called the set of prefixes, R the boundary, and E the set of suffixes. Specifically,

– S and R are disjoint, i.e., S ∪R = S ⊎R;
– The empty word is by default both a prefix and a suffix, i.e., ϵ ∈ E and ϵ ∈ S;
– f : (S ∪R) ·E 7→ {−,+} is a classification function such that for a reset-logical-

timed word γr, γr ·e ∈ (S∪R)·E, f(γr ·e) = − if Π{1,2}γr ·e is invalid, otherwise
if Π{1,2}γr · e /∈ L(A), f(γr · e) = −, and f(γr · e) = + if Π{1,2}γr · e ∈ L(A).

Given a table T, we define row : S ∪R 7→ (E 7→ {+,−}) as a function mapping
each γr ∈ S ∪R to a vector indexed by e ∈ E, each of whose components is defined
as f(γr · e), denoting a potential location.

Before constructing a hypothesis H based on the timed observation table T, the
learner has to ensure that T satisfies the following conditions:

– Reduced: ∀s, s′ ∈ S : s ̸= s′ implies row(s) ̸= row(s′);
– Closed: ∀r ∈ R,∃s ∈ S : row(s) = row(r);
– Consistent: ∀γr, γr ′ ∈ S ∪ R, row(γr) = row(γr

′) implies row(γr · σr) =
row(γr

′ · σr
′), for all σr,σr

′ ∈ Σr satisfying γr · σr, γr
′ · σr

′ ∈ S ∪ R and
Π{1,2}σr = Π{1,2}σr

′;
– Evidence-closed: ∀s ∈ S and ∀e ∈ E, the reset-logical-timed word π(Π{1,2}s · e)

belongs to S ∪R;
– Prefix-closed: S ∪R is prefix-closed.

A timed observation table T is prepared if it satisfies the above five conditions. To
get the table prepared, the learner can perform the following operations:

Making T closed. If T is not closed, there exists r ∈ R such that for all s ∈ S
row(r) ̸= row(s). The learner thus can move such r from R to S. Moreover, each
reset-logical-timed word π(Π{1,2}r · σ) needs to be added to R, where σ = (σ, 0) for
all σ ∈ Σ. Such an operation is important since it guarantees that at every location all
actions in Σ are enabled, while specifying a clock valuation of these actions, despite
that some invalid logical-timed words might be involved. Particularly, giving a bottom
value 0 as the clock valuation satisfies the precondition of the partition functions that
will be described in Sect. 3.2.

Learning One-Clock Timed Automata 7

Making T consistent. If T is not consistent, one inconsistency is resolved by adding
σ · e to E, where σ and e can be determined as follows. T being inconsistent implies
that there exist two reset-logical-timed words γr, γr

′ ∈ S ∪ R at least, such that γr ·
σr, γr

′ · σr
′ ∈ S ∪ R and Π{1,2}σr = Π{1,2}σr

′ for some σr,σr
′ ∈ Σr, with

row(γr) = row(γr
′) but row(γr · σr) ̸= row(γr

′ · σr
′). So, let σ = Π{1,2}σr =

Π{1,2}σr
′ and e ∈ E such that f(γrσr · e) ̸= f(γr

′σr
′ · e). Thereafter, the learner

fills the table by making membership queries. Note that this operation keeps the set E
of suffixes being a set of logical-timed words.

Making T evidence-closed. If T is not evidence-closed, then the learner needs to add
all prefixes of π(Π{1,2}s · e) to R for every s ∈ S and e ∈ E, except those already in
S ∪R. Similarly, the learner needs to fill the table through membership queries.

The condition that a timed observation table T is reduced and prefix-closed is in-
herently preserved by the aforementioned operations, together with the counterexample
processing described later in Sect. 3.3. Furthermore, a table may need several rounds of
these operations before being prepared (cf. Algorithm 1), since certain conditions may
be violated by different, interleaved operations.

3.2 Hypothesis construction

As soon as the timed observation table T is prepared, a hypothesis can be constructed
in two steps, i.e., the learner first builds a DFA M based on the information in T, and
then transforms M to a hypothesis H, which will later be shown as a COTA.

Given a prepared timed observation table T = (Σ,Σ,Σr,S,R,E, f), a DFA
M = (QM , ΣM , ∆M , q0M , FM) can be built as follows:

– the finite set of locations QM = {qrow(s) | s ∈ S};
– the initial location q0M = qrow(ϵ) for ϵ ∈ S;
– the set of accepting locations FM = {qrow(s) | f(s · ϵ) = + for s ∈ S and ϵ ∈ E};
– the finite alphabet ΣM = {σr ∈ Σr | γr · σr ∈ S ∪R for γr ∈ Σ∗r};
– the finite set of transitions ∆M = {(qrow(γr),σr, qrow(γr·σr)) | γr · σr ∈ S ∪

R for γr ∈ Σ∗r and σr ∈ Σr}.

The constructed DFA M is compatible with the timed observation table T in the
sense captured by the following lemma.

Lemma 1. For a prepared timed observation table T = (Σ,Σ,Σr,S,R,E, f), for
every γr ·e ∈ (S∪R)·E, the constructed DFA M = (QM , ΣM , ∆M , q0M , FM) accepts
π(Π{1,2}γr · e) if and only if f(γr · e) = +.

The learner then transforms the DFA M to a hypothesis H = (Σ,Q, q0, F, c,∆),
with Q = QM , q0 = q0M , F = FM , c being the clock and Σ the given alphabet as in T.
The set of transitions ∆ in H can be constructed as follows: For any q ∈ QM and σ ∈
Σ, let Ψq,σ = {µ | (q, (σ, µ, b), q′) ∈ ∆M}, then applying the partition function P c(·)
(defined below) to Ψq,σ returns k intervals, written as I1, · · · , Ik, satisfying µi ∈ Ii for
any 1 ≤ i ≤ k, where k = |Ψq,σ|; consequently, for every (q, (σ, µi, bi), q

′) ∈ ∆M , a
fresh transition δi = (q, σ, Ii, bi, q

′) is added to ∆.

8 J. An et al.

T5 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −

q−start q+

(a, 0,⊤)
(a, 3,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(b, 2,⊤)

(a, 0,⊤)

(b, 0,⊤)M5

q−start q+

a, [0, 1],⊤
a, [3,∞),⊤

b, [0,∞),⊤

a, (1, 3),⊥

b, [2,∞),⊤

a, [0,∞),⊤

b, [0, 2),⊤H5

Fig. 2: The prepared timed observation table T5, the corresponding DFA M5 and hypothesis H5.

Definition 3 (Partition function). Given a list of clock valuations ℓ = µ0, µ1, · · · , µn

with 0 = µ0 < µ1 · · · < µn, and ⌊µi⌋ ̸= ⌊µj⌋ if µi, µj ∈ R≥0 \ N and i ̸= j for
all 1 ≤ i, j ≤ n, let µn+1 = ∞, then a partition function P c(·) mapping ℓ to a set of
intervals {I0, I1, . . . , In}, which is a partition of R≥0, is defined as

Ii =

[µi, µi+1), if µi ∈ N ∧ µi+1 ∈ N;
(⌊µi⌋, µi+1), if µi ∈ R≥0 \ N ∧ µi+1 ∈ N;
[µi, ⌊µi+1⌋], if µi ∈ N ∧ µi+1 ∈ R≥0 \ N;
(⌊µi⌋, ⌊µi+1⌋], if µi ∈ R≥0 \ N ∧ µi+1 ∈ R≥0 \ N.

Remark 2. Definition 3 is adapted from that in [18] by imposing additional assumptions
of the list of clock valuations in order to guarantee µi ∈ Ii, for any 0 ≤ i ≤ n, due to the
underlying continuous-time semantics. Whereas, by T being prepared and the normal-
ization function described in Sect. 3.3, the set of clock valuations Ψq,σ can be arranged
into a list ℓq,σ = µ0, µ1, . . . , µn satisfying such assumptions given in Definition 3 for
any q ∈ QM and σ ∈ Σ.

Example 2. Suppose A in Fig. 1 recognizes the target timed language. Then the pre-
pared table T5, the corresponding DFA M5 and hypothesis H5 are depicted in Fig. 2.
Here, the subscript 5 indicates the fifth iteration of T (Details concerning the construc-
tions and the entire learning process are enclosed in Appendix B of [7].).

Lemma 2. Given a DFA M = (QM , ΣM , δM , q0M , FM), which is generated from a
prepared timed observation table T, the hypothesis H = (Σ,Q, q0, F, c,∆) is trans-
formed from M. For all γr · e ∈ (S ∪R) · E, H accepts the reset-logical-timed word
π(Π{1,2}γr · e) iff f(γr · e) = +.

Theorem 2. The hypothesis H is a COTA.

Given a clock valuation µ, we denote the region containing µ as JµK, defined as
JµK = [µ, µ] if µ ∈ N, and JµK = (⌊µ⌋, ⌊µ⌋ + 1) otherwise. The following theorem
establishes the compatibility of the constructed hypothesis H with the timed observation
table T.

Theorem 3. For γr ·e ∈ (S∪R)·E, let π(Π{1,2}γr ·e) = (σ1, µ1, b1) · · · (σn, µn, bn).
Then for every µ′i ∈ JµiK, the hypothesis H accepts the reset-logical-timed word γ′r =
(σ1, µ

′
1, b1) · · · (σn, µ

′
n, bn) if f(γr · e) = +, and cannot accept it if f(γr · e) = −.

Learning One-Clock Timed Automata 9

3.3 Equivalence query and counterexample processing

Suppose that the teacher knows a COTA A which recognizes the target timed language
L. Then to answer an equivalence query is to determine whether L(H) = L(A), which
can be divided into two timed language inclusion problems, i.e., whether L(H) ⊆
L(A) and L(A) ⊆ L(H). Most decision procedures for language inclusion proceed
by complementation and emptiness checking of the intersection [23]: L(A) ⊆ L(B) iff
L(A)∩L(B) = ∅. The fact that deterministic timed automata can be complemented [6]
enables solving the inclusion problem by checking the emptiness of the resulted product
automata H×A and H×A. The complementation technique, however, does not apply to
nondeterministic timed automata even if with only one single clock [4], which we plan
to incorporate in our learning framework in future work. We therefore opt for2 the al-
ternative method presented by Ouaknine and Worrell in [31] showing that the language
inclusion problem of timed automata with one clock (regardless of their determinacy)
is decidable by reduction to a reachability problem on an infinite graph. That is, there
exists a delay-timed word ω that leads to a bad configuration if L(H) ⊈ L(A). In de-
tail, the corresponding run ρ of ω ends in an accepting location in H but the counterpart
ρ′ of ω in A is not accepting. Consequently, the teacher can provide the reset-delay-
timed word ωr resulted from ω as a negative counterexample ctx−. Similarly, a posi-
tive counterexample ctx+ = (ωr,+) can be generated if L(A) ⊈ L(H). An algorithm
elaborating the equivalence query is provided in Appendix C of the full version [7].

When receiving a counterexample ctx = (ωr,+/−), the learner first converts it to
a reset-logical-timed word γr = Γ (ωr) = (σ1, µ1, b1)(σ2, µ2, b2) · · · (σn, µn, bn). By
definition, γr and ωr share the same sequence of transitions in A. Furthermore, by the
contraposition of Theorem 1, γr is an evidence for Lr(H) ̸= Lr(A) if ωr is an evidence
for L(H) ̸= L(A).

Additionally, by the definition of clock constraints Φc, at any location, if an action σ
is enabled, i.e., its guard is satisfied, w.r.t. the clock value µ ∈ R≥0\N, then σ should be
enabled w.r.t. any clock value ⌊µ⌋+θ at the location, where θ ∈ (0, 1). Specifically, only
one transition is available for σ at the location on the interval JµK, because the target
automaton is deterministic. Therefore, in order to avoid unnecessarily distinguishing
timed words and violating the assumptions of the list ℓ for the partition function, the
learner needs to apply a normalization function g to normalize γr.

Definition 4 (Normalization). A normalization function g maps a reset-logical-timed
word γr = (σ1, µ1, b1)(σ2, µ2, b2) · · · (σn, µn, bn) to another reset-logical-timed word
by resetting any logical clock to its integer part plus a constant fractional part, i.e.,
g(γr) = (σ1, µ

′
1, b1)(σ2, µ

′
2, b2) · · · (σn, µ

′
n, bn), where µ′i = µi if µi ∈ N, µ′i = ⌊µi⌋+

θ for some fixed constant θ ∈ (0, 1) otherwise.

We will instantiate θ = 0.1 in what follows. Clearly our approach works for any
other θ valued in (0, 1). This normalization process guarantees the assumptions needed
for Definition 3.

2 Remark that the learning complexity (Sect. 3.5) is measured in terms of the number of queries
rather than the time complexity of the specific method for checking the equivalence (nor mem-
bership). Additionally, the specific method of equivalence checking is not the main concern.

10 J. An et al.

T5 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −

ωr=(a,0,⊤)(a,1.3,⊤),−
==============⇒

γr=(a,0,⊤)(a,1.3,⊤)

T6 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −
(a, 0,⊤)(a, 1.3,⊤) −

q−start q+

(a, 0,⊤)

(a, 3,⊤)

(a, 1.3,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(b, 2,⊤)

(a, 0,⊤)

(b, 0,⊤)M6

Fig. 3: An illustration of the necessity of normalization by the normalization function.

Algorithm 1: Learning one-clock timed automaton with a smart teacher
input : the timed observation table T = (Σ,Σ,Σr,S,R,E, f).
output: the hypothesisH recognizing the target language L.

1 S ← {ϵ}; R← {Γ (ω) | ω = (σ, 0), ∀σ ∈ Σ}; E ← {ϵ} ; // initialization
2 fill T by membership queries;
3 equivalent ←⊥;
4 while equivalent =⊥ do
5 prepared← is prepared(T) ; // whether the table is prepared
6 while prepared =⊥ do
7 if T is not closed then make closed(T) ;
8 if T is not consistent then make consistent(T) ;
9 if T is not evidence-closed then make evidence closed(T) ;

10 prepared← is prepared(T);

11 M← build DFA(T) ; // transforming T to a DFA M
12 H ← build hypothesis(M) ; // constructing a hypothesis H from M
13 equivalent , ctx ← equivalence query(H);
14 if equivalent =⊥ then
15 ctx processing(T, ctx) ; // counterexample processing

16 returnH;

Example 3. Consider the prepared table T5 in Fig. 3 (as in Fig. 2). When the leaner asks
an equivalence query with hypothesis H5, the teacher answers that L(H5) ̸= L(A),
where A in Fig. 1 is the target automaton, and provides a counterexample (ωr,−) with
ωr = (a, 0,⊤)(a, 1.3,⊤), which can be transformed to a reset-logical-timed word γr =
(a, 0,⊤)(a, 1.3,⊤). If he adds prefixes of γr to the table directly, the learner will get a
prepared table T6 and thus construct a DFA M6. Unfortunately, the partition function
defined in Definition 3 is not applicable to (a, 1.3,⊤) and (a, 1.1,⊥) any more. On
the other hand, if he adds the prefixes of the normalized reset-logical-timed word, i.e.,
γ′r = (a, 0,⊤)(a, 1.1,⊤), to T5, the learner will then get an inconsistent table whose
consistency can be retrieved by the operation of “making T consistent” as expected.

The following theorem guarantees that the normalized reset-logical-timed word γ′r
is also an evidence for Lr(H) ̸= Lr(A). Therefore, the learner can use it as a coun-
terexample and thus adds all the prefixes of γ′r to R except those already in S ∪R.

Theorem 4. Given a valid reset-logical-timed word γr of A, its normalization γ′r =
g(γr) shares the same sequence of transitions in A.

3.4 Learning algorithm

We present in Algorithm 1 the learning procedure integrating all the previously stated
ingredients, including preparing the table, membership and equivalence queries, hy-
pothesis construction and counterexample processing. The learner first initializes the

Learning One-Clock Timed Automata 11

timed observation table T = (Σ,Σ,Σr,S,R,E, f), where S = {ϵ}, E = {ϵ},
while for every σ ∈ Σ, he builds a logical-timed word γ = (σ, 0) and then obtains
its reset counterpart π(γ) = (σ, 0, b) by triggering a membership query to the teacher,
which is then added to R. Thereafter, the learner can fill the table by additional mem-
bership queries. Before constructing a hypothesis, the learner performs several rounds
of operations described in Sect. 3.1 until T is prepared. Then, a hypothesis H is con-
structed leveraging an intermediate DFA M and submitted to the teacher for an equiva-
lence query. If the answer is positive, H recognizes the target language. Otherwise, the
learner receives a counterexample ctx and then conducts the counterexample process-
ing to update T as described in Sect. 3.3. The whole procedure repeats until the teacher
gives a positive answer to an equivalence query.

To facilitate the analysis of correctness, termination and complexity of Algorithm 1,
we introduce the notion of symbolic state that combines each location with its clock
regions: a symbolic state of a COTA A = (Σ,Q, q0, F, c,∆) is a pair (q, JµK), where
q ∈ Q and JµK is a region containing µ. If κ is the maximal constant appearing in
the clock constraints of A, then there exist 2κ + 2 such regions, including [n, n] with
0 ≤ n ≤ κ, (n, n+1) with 0 ≤ n < κ, and (κ,∞) for each location, so there are a total
of |Q|× (2κ+2) symbolic states. Then the correctness and termination of Algorithm 1
is stated in the following theorem, based on the fact that there is an injection from S (or
equivalently, the locations of H) to symbolic states of A.

Theorem 5. Algorithm 1 terminates and returns a COTA H which recognizes the target
timed language L.

3.5 Complexity

Given a target timed language L which is recognized by a COTA A, let n = |Q| be the
number of locations of A, m = |Σ| the size of the alphabet, and κ the maximal constant
appearing in the clock constraints of A. In what follows, we derive the complexity of
Algorithm 1 in terms of the number of queries.

By the proof of Theorem 5, H has at most n(2κ+ 2) locations (the size of S) dis-
tinguished by E. Thus, |E| is at most n(2κ+2) in order to distinguish these locations.
Therefore, the number of transitions of H is bounded by mn2(2κ + 2)3. Furthermore,
as every counterexample adds at least one fresh transition to the hypothesis H, where
we consider each interval of the partition corresponds to a transition, this means that
the number of counterexamples and equivalence queries is at most mn2(2κ+ 2)3.

Now, we consider the number of membership queries, that is, to compute (|S| +
|R|) × |E|. Let h be the maximal length of counterexamples returned by the teacher,
which is polynomial in the size of A according to Theorem 5 in [40], bounded by
n2. There are three cases of extending R by adding fresh rows, namely during the
processing of counterexamples, making T closed, and making T evidence-closed. The
first case adds at most hmn2(2κ + 2)3 rows to R, while the latter two add at most
n(2κ+2)×m and n2(2κ+2)2, respectively, yielding that the size of R is bounded by
O(hmn2κ3), where O(·) is the big Omicron notation. As a consequence, the number of
membership queries is bounded by O(mn5κ4). So, the total complexity is O(mn5κ4).

12 J. An et al.

It is worth noting the above analysis is given in the worst case, where all partitions
need to be fully refined. But, in practice we can learn the automaton without refining
most partitions, and therefore the number of equivalence and membership queries, as
well as the number of locations in the learned automaton are much fewer than the cor-
responding worst-case bounds. This will be demonstrated by examples in Sect. 5.

3.6 Accelerating Trick

In the timed observation table, the function f maps invalid reset-logical-timed words as
well as certain valid ones to “−” when the teacher maintains a COTA A as the oracle.
The learner thus needs multiple rounds of queries to distinguish the “sink” location from
other unaccepting locations. If the function f is extended to map invalid reset-logical-
timed words to a distinct symbol, say “×”, when we let a DOTA A be the oracle, then
the learner will take much fewer queries. We will later show in the experiments that
such a trick significantly accelerates the learning process.

4 Learning from a Normal Teacher

In this section, we consider the problem of learning timed automata with a normal
teacher. As before, we assume the timed language to be learned comes from a complete
DOTA. For the normal teacher, inputs to membership queries are delay-timed words,
and the teacher returns whether the word is in the language (without giving any addi-
tional information). Inputs to equivalence queries are candidate DOTAs, and the teacher
either answers they are equivalent or provides a delay-timed word as a counterexample.

The algorithm here is based on the procedure in the previous section. We still main-
tain observation tables where the elements in S ∪R are reset-logical-timed words and
the elements in E are logical-timed words. In order to obtain delay-timed words for the
membership queries, we need to guess clock reset information for transitions in the ta-
ble. More precisely, in order to convert a logical-timed word to a delay-timed word, it is
necessary to know clock reset information for all but the last transition. Hence, it is nec-
essary to guess reset information for each word in S ∪R (since S ∪R is prefix-closed,
this is equivalent to guessing reset information for the last transition of each word).
Also, for each entry in (S ∪ R) × E, it is necessary to guess all but the last transi-
tion in E. The algorithm can be thought of as exploring a search tree, where branching
is caused by guesses, and successor nodes are constructed by the usual operations of
preparing a table and dealing with a counterexample.

The detailed process is given in Algorithm 2. The learner maintains a set of table in-
stances, named ToExplore , which contains all table instances that need to be explored.

The initial tables in ToExplore are as follows. Each table has S = E = {ϵ}. For
each σ ∈ Σ, there is one row in R corresponding to the logical-timed word ω = (σ, 0).
It is necessary to guess a reset b for each ω thereby transforming it to a reset-logical-
timed word γr = (σ, 0, b). There are 2|Σ| possible combinations of guesses. These
tables are filled by making membership queries (in this case, the membership queries for
each table are the same). The resulting 2|Σ| tables form the initial tables in ToExplore .

Learning One-Clock Timed Automata 13

Algorithm 2: Learning one-clock timed automaton with a normal teacher
input : the timed observation table T = (Σ,Σ,Σr,S,R,E, f).
output: the hypothesisH recognizing the target language L.

1 ToExplore ← ∅; S ← {ϵ}; R← {π(Γ (ω)) | ω = (σ, 0), ∀σ ∈ Σ}; E ← {ϵ};
2 currentTable ← (Σ,Σ,Σr,S,R,E, f);
3 tables← guess and fill(currentTable); // guess resets and fill all table instances
4 ToExplore.insert(tables); // insert table instances tables into ToExplore
5 currentTable←ToExplore.pop(); // pop out head instance as the current table
6 equivalent ←⊥;
7 while equivalent =⊥ do
8 prepared← is prepared(currentTable); // whether the current table is prepared
9 while prepared =⊥ do

10 if currentTable is not closed then
11 tables← guess and make closed(currentTable); ToExplore.insert(tables);
12 currentTable←ToExplore.pop();

13 if currentTable is not consistent then
14 tables← guess and make consistent(currentTable); ToExplore.insert(tables);
15 currentTable←ToExplore.pop();

16 if currentTable is not evidence-closed then
17 tables← guess and make evidence closed(currentTable); ToExplore.insert(tables);
18 currentTable←ToExplore.pop();

19 prepared← is prepared(currentTable);

20 M← build DFA(currentTable) ; // transforming currentTable to a DFA M
21 H ← build hypothesis(M) ; // constructing a hypothesis H from M
22 equivalent , ctx ← equivalence query(H); // ctx is a delay-timed word
23 if equivalent =⊥ then
24 tables← guess and ctx processing(currentTable, ctx) ; // counterexample

processing
25 ToExplore.insert(tables);
26 currentTable←ToExplore.pop();

27 returnH;

In each iteration of the algorithm, one table instance is taken out of ToExplore . The
learner checks whether the table is closed, consistent, and evidence closed. If the table is
not closed, i.e. there exists r ∈ R such that row(r) ̸= row(s) for all s ∈ S, the learner
moves r from R to S. Then for each σ ∈ Σ, the element r · (σ, 0) is added to R, and a
guess has to be made for its reset information. Hence, 2|Σ| unfilled table instances will
be generated. Next, for each entry in the |Σ| new rows of R, it is necessary to guess reset
information for all but the last transition in e ∈ E. After this guess, it is now possible
to fill the table instances by making membership queries with transformed delay-timed
words. Hence, there are at most 2(

∑
ei∈E\{ϵ} (|ei|−1))×|Σ| filled table instances for one

unfilled table instance. All filled table instances are inserted into ToExplore .

If the table is not consistent, i.e. there exist some γr, γ′r ∈ S∪R and σr ∈ Σr such
that γr ·σr, γ

′
r ·σr ∈ S∪R and row(γr) = row(γ′r), but row(γr ·σr) ̸= row(γ′r ·σr).

Let e ∈ E be one place where they are different. Then σr ·e needs to be added to E. For
each entry in S∪R, all but the last transition in σr ·e need to be guessed, then the table
can be filled. 2(|σ·e|−1)×(|S|+|R|) filled table instances will be generated and inserted
into ToExplore . The operation for making tables evidence-closed is analogous.

Once the current table is prepared, the learner builds a hypothesis H and makes an
equivalence query to the teacher. If the answer is positive, then H is a COTA which rec-
ognizes the target timed language L; otherwise, the teacher gives a delay-timed word
ω as a counterexample. The learner first finds the longest reset-logical-timed word in

14 J. An et al.

R which, when converted to a delay-timed word, agrees with a prefix of ω. The re-
mainder of ω, however, needs to be converted to a reset-logical-timed word by guessing
reset information. The corresponding prefixes are then added to R. Hence, at most
2|ω| unfilled table instances are generated. For each unfilled table instance, at most
2(

∑
ei∈E\{ϵ} (|ei|−1))×|ω| filled tables are produced and inserted into ToExplore .
Throughout the learning process, the learner adds a finite number of table instances

to ToExplore at every iteration. Hence, the search tree is finite-branching. Moreover, if
all guesses are correct, the resulting table instance will be identical to the observation
table in the learning process with a smart teacher (apart from the guessing processes,
the basic table operations are the same as those in Section 3.1). This means, with an
appropriate search order, for example, taking the table instance that requires the least
number of guesses in ToExplore at every iteration, the algorithm terminates and re-
turns the same table as in the learning process with a smart teacher, which is a COTA
that recognizes the target language L. In conformity to Theorem 1, the algorithm may
terminate even if the corresponding reset-logical-timed languages are not equivalent,
while yielding correct COTAs recognizing the same delay-timed language.

Theorem 6. Algorithm 2 terminates and returns a COTA H which recognizes the target
timed language L.

Complexity analysis. If T = (Σ,Σ,Σr,S,R,E, f) is the final observation table for
the correct candidate COTA, the number of guessed resets in S∪R is |S|+ |R|, and the
number of guessed resets for entries in each row of the table is

∑
ei∈E\{ϵ} (|ei| − 1).

Hence, the total number of guessed resets is (|S|+ |R|)× (1+
∑

ei∈E\{ϵ} (|ei| − 1)).
Assuming an appropriate search order (for example according to the number of guesses
in each table), this yields the number of table instances considered before termination
as O(2(|S|+|R|)×(1+

∑
ei∈E\{ϵ} (|ei|−1))).

5 Implementation and Experimental Results
To investigate the efficiency and scalability of the proposed methods, we implemented
a prototype3 in PYTHON for learning deterministic one-clock timed automata. The ex-
amples include a practical case concerning the functional specification of the TCP pro-
tocol [26] and a set of randomly generated DOTAs to be learnt. All of the evaluations
have been carried out on a 3.6GHz Intel Core-i7 processor with 8GB RAM running
64-bit Ubuntu 16.04.

Functional specification of the TCP protocol. In [26], a state diagram on page 23 spec-
ifies state changes during a TCP connection triggered by causing events while leading
to resulting actions. As observed by Ouaknine and Worrell in [31], such a functional
specification of the protocol can be represented as a one-clock timed automaton. In our
setting, the corresponding DOTA A to be learnt is configured to have |Q| = 11 states
with the two CLOSED states collapsed, |Σ| = 10 after abstracting the causing events
and the resulting actions, |F | = 2, and |∆| = 19 with appropriately specified timing
constraints including guards and resets. Using the algorithm with the smart teacher, a

3 Available at https://github.com/Leslieaj/OTALearning. The evaluated artifact is archived in [8].

https://github.com/Leslieaj/OTALearning

Learning One-Clock Timed Automata 15

Table 1: Experimental results on random examples for the smart teacher situation.

Case ID |∆|mean
#Membership #Equivalence

nmean tmean

Nmin Nmean Nmax Nmin Nmean Nmax

4 4 20 16.3 118 245.0 650 20 30.1 42 4.5 24.7
7 2 10 16.9 568 920.8 1393 23 31.3 37 9.1 14.6
7 4 10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0
7 6 10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6
7 4 20 34.3 411 1183.4 1890 52 70.5 93 9.5 101.7

10 4 20 39.1 920 1580.9 2160 61 73.1 88 11.7 186.7
12 4 20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8
14 4 20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID: n m κ, consisting of the number of locations, the size of the alphabet and the maximum
constant appearing in the clock constraints, respectively, of the corresponding group of A’s.
|∆|mean: the average number of transitions in the corresponding group.
#Membership & #Equivalence: the number of conducted membership and equivalence queries,
respectively. Nmin: the minimal, Nmean: the mean, Nmax: the maximum.
nmean: the average number of locations of the learned automata in the corresponding group.
tmean: the average wall-clock time in seconds, including that taken by the learner and the teacher.

correct DOTA H is learned in 155 seconds after 2600 membership queries and 28 equiv-
alence queries. Specifically, H has 15 locations excluding a sink location connected by
28 transitions. The introduction of 4 new locations comes from splitting of guards along
transitions, which however can be trivially merged back with other locations. The fig-
ures depicting A and H can be found in Appendix D of [7].

Random examples for a smart teacher. We randomly generated 80 DOTAs in eight
groups, with each group having different numbers of locations, size of alphabet, and
maximum constant appearing in clock constraints. As shown in Table 1, the proposed
learning method succeeds in all cases in identifying a DOTA that recognizes the same
timed language. In particular, the number of membership queries and that of equiv-
alence queries appear to grow polynomially with the size of the problem4, and are
much smaller than the worst-case bounds estimated in Sect. 3.5. Moreover, the learned
DOTAs do not have prominent increases in the number of locations (by comparing
nmean with the first component of Case IDs). The average wall-clock time including
both time taken by the learner and by the teacher is recorded in the last column tmean, of
which, however, often over 90% is spent by the teacher for checking equivalences w.r.t.
small T’s while around 50% by the learner for checking the preparedness condition
w.r.t. large T’s.

It is worth noting that all of the results reported above are carried out on an imple-
mentation equipped with the accelerating trick discussed in Sect. 3.6. We remark that
when dropping this trick, the average number of membership queries blow up with a
factor of 0.83 (min) to 15.02 (max) with 2.16 in average for all the 8 groups, and 0.84
(min) to 1.71 (max) with 1.04 for the average number of equivalence queries, leading
to dramatic increases also in the computation time (including that in operating tables).

4 An exception w.r.t. the group 7 6 10 is due to relatively simple DOTAs generated occasionally.

16 J. An et al.

Table 2: Experimental results on random examples for the normal teacher situation.

Case ID |∆|mean
#Membership #Equivalence

nmean tmean #Texplored #Learnt
Nmin Nmean Nmax Nmin Nmean Nmax

3 2 10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10
4 2 10 6.8 67 134.0 345 6 13.3 24 4.0 7.4 563.0 10/10
5 2 10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10
6 2 10 11.9 73 348.3 708 10 16.7 30 5.6 59.8 5077.6 7/10
4 4 20 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence: the number of conducted membership and equivalence queries
with the cached methods, respectively. Nmin: the minimal, Nmean: the mean, Nmax: the maximum.
#Texplored: the average number of the explored table instances.
#Learnt: the number of the learnt DOTAs in the group (learnt/total).

The alternative implementation and experimental results without the accelerating trick
can also be found in the tool page (under the dev branch).

Random examples for a normal teacher. Due to its high, exponential complexity, the
algorithm with a normal teacher failed (out of memory) in identifying DOTAs for al-
most all the above examples, except 6 cases out of the 10 in group 4 4 20. We therefore
randomly generated 40 extra DOTAs of smaller size classified into 4 groups. With the
accelerating trick, the learner need not guess the resets in elements of E for an entry
in S ∪ R if the querying result of the entry is the sink location. We also omitted the
checking of the evidence-closed condition, since it may add redundant rows in R, lead-
ing to more guesses and thereby a larger search space. The omission does not affect the
correctness of the learnt DOTAs. Moreover, as different table instances may generate
repeated queries, we cached the results of membership queries and counterexamples,
such that the numbers of membership and equivalence queries to the teacher can be
significantly reduced. Table 2 shows the performance of the algorithm in this setting.
Results without caching are available in the tool page (under the normal branch).

6 Conclusion

We have presented a polynomial active learning method for deterministic one-clock
timed automata from a smart teacher who can tell information about clock resets in
membership and equivalence queries. Our technique is based on converting the prob-
lem to that of learning reset-logical-timed languages. We then extend the method to
learning DOTAs from a normal teacher who receives delay-timed words for member-
ship queries, while the learner guesses the reset information in the observation table.
We evaluate both algorithms on randomly generated examples and, for the former case,
the functional specification of the TCP protocol.

Moving forward, an extension of our active learning method to nondeterministic
OTAs and timed automata involving multiple clocks is of particular interest.

Data Availability Statement The datasets generated and/or analyzed during the current study
are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.11545983.v3.

https://doi.org/10.6084/m9.figshare.11545983.v3

Learning One-Clock Timed Automata 17

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.W.: Learning register automata
with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015.
LNCS, vol. 9399, pp. 165–183. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
319-25150-9 11

2. Aarts, F., Vaandrager, F.W.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 6

3. Abdullah, J., Dai, G., Mohaqeqi, M., Yi, W.: Schedulability analysis and software synthesis
for graph-based task models with resource sharing. In: Proceedings of 24th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2018. pp. 261–270. IEEE
Computer Society (2018)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
5. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of timed

automata. Theor. Comput. Sci. 211(1-2), 253–273 (1999)
6. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30080-9 1

7. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata (full
version). arXiv:1910.10680 (2019), https://arxiv.org/abs/1910.10680

8. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata.
Figshare (2020), https://doi.org/10.6084/m9.figshare.11545983.v3

9. An, J., Wang, L., Zhan, B., Zhan, N., Zhang, M.: Learning real-time automata. SCIENCE
CHINA Information Sciences (2020). https://doi.org/10.1007/s11432-019-2767-4, to appear.

10. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

11. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-96145-3 23

12. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009.
pp. 1004–1009. AAAI Press (2009)

13. Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: The au-
tomata learning framework. In: Touili, T., Cook, B., Jackson, P.B. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14295-6 32

14. Caldwell, B., Cardell-Oliver, R., French, T.: Learning time delay Mealy machines from pro-
grammable logic controllers. IEEE Trans. Automation Science and Engineering 13(2), 1155–
1164 (2016)

15. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite state ma-
chines. Formal Asp. Comput. 28(2), 233–263 (2016)

16. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Communications of
the ACM 24(8), 533–536 (1981)

17. Dima, C.: Real-time automata. Journal of Automata, Languages and Combinatorics 6(1),
3–23 (2001)

18. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-540-30080-9_1
https://arxiv.org/abs/1910.10680
https://doi.org/10.6084/m9.figshare.11545983.v3
https://doi.org/10.1007/s11432-019-2767-4
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-662-54577-5_10

18 J. An et al.

19. Farzan, A., Chen, Y., Clarke, E.M., Tsay, Y., Wang, B.: Extending automated composi-
tional verification to the full class of omega-regular languages. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78800-3 2

20. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.W.: Combining model learning and model
checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016.
LNCS, vol. 9780, pp. 454–471. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-41540-6 25

21. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Verleg, P.: Model
learning and model checking of SSH implementations. In: Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software, SPIN 2017. pp.
142–151. ACM (2017)

22. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theor.
Comput. Sci. 411(47), 4029–4054 (2010)

23. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley Publishing Company (1979)

24. Howar, F., Jonsson, B., Vaandrager, F.W.: Combining black-box and white-box techniques
for learning register automata. In: Steffen, B., Woeginger, G.J. (eds.) Computing and Soft-
ware Science - State of the Art and Perspectives, LNCS, vol. 10000, pp. 563–588. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91908-9 26

25. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In:
Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 17

26. Information Science Institute, University of Southern California: Transmission control proto-
col (DARPA internet program protocol specification). https://www.rfc-editor.org/rfc/rfc793.
txt (1981)

27. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - A framework for active
automata learning. In: Kroening, D., Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
487–495. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21690-4 32

28. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata based
on family of DFAs and classification trees. In: Legay, A., Margaria, T. (eds.) TACAS 2017.
LNCS, vol. 10205, pp. 208–226. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5 12

29. Maler, O., Mens, I.: Learning regular languages over large alphabets. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54862-8 41

30. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for
legacy reactive systems. In: Proceedings of the 9th IEEE International High-Level Design
Validation and Test Workshop, HLDVT 2004. pp. 95–100. IEEE Computer Society (2004)

31. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing
a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic in Computer
Science, LICS 2004. pp. 54–63. IEEE Computer Society (2004)

32. Pastore, F., Micucci, D., Mariani, L.: Timed k-Tail: Automatic inference of timed automata.
In: Proceedings of 10th IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017. pp. 401–411. IEEE Computer Society (2017)

33. Schmidt, J., Ghorbani, A., Hapfelmeier, A., Kramer, S.: Learning probabilistic real-time au-
tomata from multi-attribute event logs. Intell. Data Anal. 17(1), 93–123 (2013)

34. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-642-27940-9_17
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-05089-3_14

Learning One-Clock Timed Automata 19

35. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In: Proceedings
of 17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS
2011. pp. 71–80. IEEE Computer Society (2011)

36. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based learning of
Markov decision processes. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 651–669. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-030-30942-8 38

37. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn - learning timed au-
tomata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750,
pp. 216–235. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29662-9 13

38. Vaandrager, F.W.: Model learning. Communications of the ACM 60(2), 86–95 (2017)
39. Verwer, S., de Weerdt, M., Witteveen, C.: One-clock deterministic timed automata are effi-

ciently identifiable in the limit. In: Dediu, A., Ionescu, A., Martı́n-Vide, C. (eds.) LATA 2009.
LNCS, vol. 5457, pp. 740–751. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00982-2 63

40. Verwer, S., de Weerdt, M., Witteveen, C.: The efficiency of identifying timed automata and
the power of clocks. Information and Computation 209(3), 606–625 (2011)

41. Verwer, S., de Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-time au-
tomata from labeled data. Machine Learning 86(3), 295–333 (2012)

42. Verwer, S., Weerdt, M.D., Witteveen, C.: An algorithm for learning real-time automata. In:
Proceedings of the 18th Annual Machine Learning Conference of Belgium and the Nether-
lands, Benelearn 2007. pp. 57–64 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1007/978-3-642-00982-2_63
http://creativecommons.org/licenses/by/4.0/

20 J. An et al.

Appendix A Proofs for Lemmas and Theorems

Proof (of Theorem 1). By the definitions of delay-timed word and reset-delay-timed
word, it suffices that L(A) = L(B) if Lr(A) = Lr(B). By the definitions of reset-
delay-timed word and reset-logical-timed word with their mutual transforming method,
we conclude that Lr(A) = Lr(B) iff Lr(A) = Lr(B). Hence, if Lr(A) = Lr(B), then
L(A) = L(B). This completes the proof. ⊓⊔

Proof (of Lemma 1). A reset-logical-timed word γr ∈ S∪R happens in two cases, i.e.,
γr ∈ S or γr ∈ R. For the first case, π(Π{1,2}γr · e) ∈ S ∪ R holds for all e ∈ E
since T is evidence-closed. Hence let γ′r = π(Π{1,2}γr ·e), then obviously γ′r ∈ S∪R.
Therefore, if f(γr ·e) = +, then f(γ′r ·ϵ) = +, meaning that γ′r ends in qrow(γ′

r)
∈ FM ,

namely the constructed DFA M accepts π(Π{1,2}γr · e). Furthermore, if f(γr · e) = −,
then f(γ′r · ϵ) = −, indicating that γ′r ends in qrow(γ′

r)
/∈ FM . This follows that M does

not accept π(Π{1,2}γr · e).
For the second case, i.e. γr ∈ R, then there exists γ′r ∈ S such that row(γ′r) =

row(γr) since T is closed, which further implies that f(γr · e) = f(γ′r · e) for all
e ∈ E. Thus, it is reduced to the first case. ⊓⊔

Proof (of Lemma 2). Given a DFA M, by the above construction, for each transition
(q, (σ, µ, b), q′) ∈ ∆M , there is a corresponding transition δ = (q, σ, I, b, q′) where
µ ∈ I ∈ P c(Ψq,σ) in the hypothesis H. Hence, given a reset-logical-timed word
π(Π{1,2}γr · e) = (σ1, µ1, b1) · · · (σn, µn, bn), H accepts this word iff M accepts it.
By Lemma 1, H accepts π(Π{1,2}γr · e) iff f(γr · e) = +. ⊓⊔

Proof (of Theorem 2). First, in order to guarantee T being closed when moving an
element r ∈ R to S, the learner adds the reset-logical-timed word π(Π{1,2}r · (σ, 0))
for every σ ∈ Σ to R, which means that there is always at least a outgoing transition
from qrow(r) for every action in Σ. Secondly, Definition 3 implies that P c(Ψqrow(r),σ) is
a partition of R≥0 for every σ ∈ Σ. Hence, H is a COTA. ⊓⊔

Proof (of Theorem 3). By Lemma 1, 2 and Theorem 2, for every γr · e ∈ (S ∪R) ·E,
there exists a unique accepting run ρ that admits π(Π{1,2}γr · e) if f(γr · e) = +.
Hence, every logical-timed action (σi, µi, bi), with 1 ≤ i ≤ n, triggers a transition
δi = (qi, σi, ϕi, bi, qi+1) from qi to qi+1, where µi ∈ ϕi by Definition 3. By the above
definition, JµiK ⊆ ϕi, therefore (σi, µ

′
i, bi) can also trigger the transition δi. Hence,

there exists a unique accepting run ρ′ that admits γ′r = (σ1, µ
′
1, b1) · · · (σn, µ

′
n, bn),

i.e., H admits γ′r. Suppose it is not the case when f(γr · e) = −, it is easy to follow
f(γr · e) = + by Lemma 2, which contradicts to f(γr · e) = −. ⊓⊔

Proof (of Theorem 4). Let γr = (σ1, µ1, b1)(σ2, µ2, b2) · · · (σn, µn, bn) and its nor-
malization γ′r = (σ1, µ

′
1, b1)(σ2, µ

′
2, b2) · · · (σn, µ

′
n, bn). By the definition of g, Jµ′K =

JµK. Therefore, if (σi, µi, bi) fires a transition δi = (qi, σi, ϕi, bi, qi+1), then (σi, µ
′
i, bi)

can also fire the same transition according to the definition of Φc. Specifically, by the
assumption that A is deterministic, both the two timed actions can only be taken by the
transition. Hence, γ′r and γr share the same sequence of transitions in A. ⊓⊔

Learning One-Clock Timed Automata 21

Proof (of Theorem 5). By Theorem 2, the returned hypothesis H is a COTA. Then
the correctness (i.e. H recognizes the target timed language) follows directly from the
equivalence query. Now we prove the termination. Observe that each reset-logical-timed
word s ∈ S corresponds to a symbolic state reached after running s on A. Since T is
reduced, implying that given any two elements s1, s2 ∈ S, there exists e ∈ E such that
running s1 · e and s2 · e on A gives different acceptance results. Further by Theorem 3,
s1 and s2 must reach different symbolic states of A. Hence, there is an injection from
S (or equivalently, the locations of H) to symbolic states of A. It follows that the size
of the set S is bounded by |Q| × (2κ+ 2). Since each iteration of the algorithm either
adds at least one element to S or refines at least one of the partitions along transitions
of H, or both, the algorithm is guaranteed to terminate. ⊓⊔

Proof (of Theorem 6). The algorithm can be viewed as a breadth-first-search (BFS) on a
finite multi-way tree, each of whose nodes is a filled table instance. The depth of a node
is the number of guessed resets. In other words, table instances at the same depth have
the same number of guesses. The learner takes out a table instance that required the least
number of guesses in ToExplore at every iteration. If T = (Σ,Σ,Σr,S,R,E, f) is
the final table in the learning process with a smart teacher, T can be found at depth
at most (|S| + |R|) × (1 +

∑
ei∈E\{ϵ} (|ei| − 1)) of the tree, since it corresponds

to choosing the correct table instance corresponding to the smart teacher situation at
every guess. Then the learner can find T after 2(|S|+|R|)×(1+

∑
ei∈E\{ϵ} (|ei|−1)) steps

in the worst case, since the learner has to check all of the tables at earlier depths before
entering depth (|S|+ |R|)×(1+

∑
ei∈E\{ϵ} (|ei| − 1)) and finds T. Consequently, the

algorithm terminates and returns a correct COTA H which recognizes the target timed
language L. ⊓⊔

22 J. An et al.

Appendix B Detailed Learning Process for the DOTA A in Fig. 1

T5 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −

q−start q+

(a, 0,⊤)
(a, 3,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(b, 2,⊤)

(a, 0,⊤)

(b, 0,⊤)M5

q−start q+

a, [0, 1],⊤
a, [3,∞),⊤

b, [0,∞),⊤

a, (1, 3),⊥

b, [2,∞),⊤

a, [0,∞),⊤

b, [0, 2),⊤H5

Fig. 4: The prepared timed observation table T5, the corresponding DFA M5 and hypothesis H5.
A copy of Fig. 2 for the ease of reading.

Hypothesis construction for T5. Suppose A in Fig. 1 recognizes the target timed lan-
guage. Then the prepared table T5, the corresponding DFA M5 and hypothesis H5 are
depicted in Fig. 4 (a copy of Fig. 2 for the ease of reading). The learner first builds the
DFA M5 as follows. For ϵ and (a, 1.1,⊥) in S, set QM5

= {q−, q+} with row(ϵ) = −
and row((a, 1.1,⊥)) = +; while q0M5

= q−; FM5
= {q+} with f((a, 1.1,⊥) · ϵ) =

+; ΣM5 = {(a, 0,⊤), (b, 0,⊤), (a, 1.1,⊥), (b, 2,⊤), (a, 3,⊤)} and in the mean time
∆M5 = {(q−, (a, 1.1,⊥), q+), (q−, (a, 0,⊤), q−), (q−, (b, 0,⊤), q−), (q+, (a, 0,⊤), q−),
(q+, (b, 0,⊤), q−), (q+, (b, 2,⊤), q−), (q−, (a, 3,⊤), q−)}. The DFA M5 is then trans-
formed to H5 = (Σ,Q, q0, F, c,∆) with the same set of locations, initial location
and set of accepting locations. For location q−, Ψq−,a = {0, 3, 1.1}. We arrange it
to a list ℓq−,a = 0, 1.1, 3 and then P c(ℓq−,a) = {[0, 1], (1, 3), [3,∞)}. Then for
transitions (q−, (a, 0,⊤), q−),(q−, (a, 1.1,⊥), q+) and (q−, (a, 3,⊤), q1) in ∆M5 , let
δ1 = (q−, a, [0, 1],⊤, q−), δ2 = (q−, a, (1, 3),⊥, q+) and δ3 = (q−, a, [3,∞],⊤, q−)
be fresh transitions. The transformation for other locations and actions is analogous.

The entire learning process. In Fig. 5, a prepared T1 is the initial instance of the table.
The learner builds a DFA M1 and a hypothesis H1 in Fig. 5. After making an equiva-
lence query to the teacher, he receives a counterexample ctx 1 = ((a, 1.1,⊥),+). By
transforming the delay-timed-word (a, 1.1,⊥) to a reset-logical-timed word (a, 1.1,⊥),
the learner adds the normalized counterpart to the table and thus get the second in-
stance T2 which is not closed. Hence, he moves (a, 1.1,⊥) from R to S, and then adds
reset-logical-timed words (a, 1.1,⊥)(a, 0,⊤) and (a, 1.1,⊥)(b, 0,⊤) to R after mem-
bership queries. The instance T3 is prepared. After two iterations, he arrives at T5.
As described in Example 3, the learner normalizes the transformed reset-logical-timed
word (a, 0,⊤)(a, 1.3,⊤) as (a, 0,⊤)(a, 1.1,⊤). Then he gets T6 which is not consis-
tent, since row(ϵ) = row((a, 0,⊤)) and Π{1,2}((a, 1.1,⊥)) = Π{1,2}((a, 1.1,⊤)),
but row((a, 1.1,⊥)) ̸= row((a, 0,⊤)(a, 1.1,⊤)). Hence, he adds (a, 1.1) · ϵ to E for
f((a, 1.1,⊥) · ϵ) ̸= f((a, 0,⊤)(a, 1.1,⊤) · ϵ) leading to T7. The process goes on until
the learner finally gets a hypothesis H10 which recognizes the target timed language.
Obviously, after combining transitions according to guards in H10, we get a COTA
same to A as depicted in Fig. 1.

Learning One-Clock Timed Automata 23

Appendix C Algorithm for Equivalence Queries

Algorithm 3: equivalence query(H)
input : a hypothesisH.
output: equivalent : a Boolean value to identify whether L(H) = L(A) where COTA A recognizes the target

language;
ctx : a counterexample.

1 equivalent ←⊥; ctx ← ϵ;
2 flag−,flag+ ←⊤;
3 if L(H) ⊈ L(A) then
4 flag−←⊥ ; // negative counterexample

5 generate a reset-delay-timed word ωr from a bad configration W ;
6 ctx−← (ωr,−);

7 if L(A) ⊈ L(H) then
8 flag+←⊥ ; // positive counterexample

9 generate a reset-delay-timed word ωr
′ from a bad configration W ′;

10 ctx+← (ωr
′,+);

11 equivalent ← flag− ∧ flag+;
12 if equivalent =⊥ then
13 ctx ← select a counterexample from ctx+ and ctx−;

14 return equivalent , ctx ;

Appendix D Automata Pertaining to the TCP Protocol

Relabelling actions in [26] results in the automaton to be learned (left of Fig. 6):

{a : passive OPEN, b : rcv SYN, c : SEND, d : rcv SYN, ACK, e : rcv ACK of SYN,
f : CLOSE, g : rcv FIN, h : rcv ACK of FIN, i : Timeout, j : active OPEN}.

Mapping locations in the learnt automaton (right of Fig. 6) back to that in [26]:

{q1 : CLOSED, q2 : LISTEN, q3 : SYN SENT, q4 : SYN RCVD, q5 : ESTAB,
q6, q15 : FINWAIT− 1, q7, q14 : CLOSE WAIT, q8, q13 : CLOSING,

q9, q12 : FINWAIT− 2, q10 : LAST− ACK, q11 : TIME WAIT}.

24 J. An et al.

T1 ϵ

ϵ −
(a, 0,⊤) −
(b, 0,⊤) −

ctx1=(a,1.1,⊥),+
===============⇒
g((a,1.1,⊥))=(a,1.1,⊥)

T2 ϵ

ϵ −
(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥) +

closed
===⇒

T3 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −

ctx2=(a,1.1,⊥)(b,0.9,⊤),+
========================⇒
g((a,1.1,⊥)(b,2,⊤))=(a,1.1,⊥)(b,2,⊤)

T4 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

ctx3=(a,3,⊤),−
============⇒
g((a,3,⊤))=(a,3,⊤)

T5 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −

ctx4=(a,0,⊤)(a,1.3,⊤),−
========================⇒
g((a,0,⊤)(a,1.3,⊤))=(a,0,⊤)(a,1.1,⊤)

T6 ϵ

ϵ −
(a, 1.1,⊥) +

(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −
(a, 0,⊤)(a, 1.1,⊤) −

consistent
=====⇒

T7 ϵ (a, 1.1)

ϵ − +
(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

evidence closed
=======⇒

T8 ϵ (a, 1.1)

ϵ − +
(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

(a, 1.1,⊥)(a, 1.1,⊤) − −

closed
===⇒

T9 ϵ (a, 1.1)

ϵ − +
(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

(a, 1.1,⊥)(a, 1.1,⊤) − −
(a, 0,⊤)(a, 0,⊤) − −
(a, 0,⊤)(b, 0,⊤) − −

ctx5=(a,1.1,⊥)(b,2.9,⊤),−
========================⇒
g((a,1.1,⊥)(b,4,⊤))=(a,1.1,⊥)(b,4,⊤)

T10 ϵ (a, 1.1)

ϵ − +
(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

(a, 1.1,⊥)(a, 1.1,⊤) − −
(a, 0,⊤)(a, 0,⊤) − −
(a, 0,⊤)(b, 0,⊤) − −

(a, 1.1,⊥)(b, 4,⊤) − −

q−start

(a, 0,⊤)
(b, 0,⊤)

M1

q−start

a, [0,∞),⊤
b, [0,∞),⊤

H1

q−start q+

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)M3

q−start q+

a, [0, 1],⊤

b, [0,∞),⊤

a, (1,∞),⊥

a, [0,∞),⊤

b, [0,∞),⊤H3

q−start q+

(a, 0,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(a, 0,⊤)

(b, 0,⊤)

(b, 2,⊤)

M4

q−start q+

a, [0, 1],⊤

b, [0,∞),⊤

a, (1,∞),⊥

a, [0,∞),⊤

b, [0, 2),⊤

b, [2,∞),⊤

H4

q−start q+

(a, 0,⊤)
(a, 3,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(b, 2,⊤)

(a, 0,⊤)

(b, 0,⊤)M5

q−start q+

a, [0, 1],⊤
a, [3,∞),⊤

b, [0,∞),⊤

a, (1, 3),⊥

b, [2,∞),⊤

a, [0,∞),⊤

b, [0, 2),⊤H5

q−+start q+−

q−−

(a, 1.1,⊥)

(b, 0,⊤) (b, 2,⊤)

(a, 0,⊤
)

(a, 3,⊤
)

(a
, 0
,⊤

)
(a
, 1
.1
,⊤

)
(b
, 0
,⊤

)

(a, 0,⊤)

(a, 1.1,⊤)

(b, 0,⊤)
M9

q−+start q+−

q−−

a, (1, 3), ⊥

b, [0,∞), ⊤ b, [2,∞), ⊤

a, [0, 1], ⊤

a, [3,∞
), ⊤

a,
[0
, 1
],
⊤

a,
(1
,∞

),
⊤

b,
[0
, 2
),
⊤

a, [0, 1], ⊤

a, (1,∞), ⊤

b, [0,∞), ⊤
H9

q−+start q+−

q−−

(a, 1.1,⊥)

(b, 0,⊤) (b, 2,⊤)

(a, 0,⊤
)

(a, 3,⊤
)

(a
, 0
,⊤

)
(a
, 1
.1
,⊤

)
(b
, 0
,⊤

)
(b
, 4
,⊤

)

(a, 0,⊤)

(a, 1.1,⊤)

(b, 0,⊤)
M10

q−+start q+−

q−−

a, (1, 3), ⊥

b, [0,∞), ⊤ b, [2, 4), ⊤

a, [0, 1], ⊤

a, [3,∞
), ⊤

a,
[0
, 1
],
⊤

a,
(1
,∞

),
⊤

b,
[0
, 2
),
⊤

(b
, [
4,
∞
),
⊤
)

a, [0, 1], ⊤

a, (1,∞), ⊤

b, [0,∞), ⊤
H10

Fig. 5: Iterations of the timed observation table, DFAs and hypotheses w.r.t. A in Fig. 1.

Learning One-Clock Timed Automata 25

C
L
O
S
E
D

st
ar

t

L
I
S
T
E
N

S
Y
N
R
C
V
D

S
Y
N
S
E
N
T

E
S
T
A
B

F
I
N
W
A
I
T
−
1

C
L
O
S
E
W
A
I
T

C
L
O
S
I
N
G

F
I
N
W
A
I
T
−
2

L
A
S
T
−
A
C
K

T
I
M
E
W
A
I
T

a, [0,∞),⊤

f,[1,∞),⊤

b,
[0
,2
],
⊥

c,
[0
, 1
],
⊥

b,
[0
,2
],
⊥

d,
[0
,5
],
⊤

j, [
0,
∞),⊤

e,
[0
, 5
],
⊤

f, [0,∞),⊤

f,
[0
,∞

),
⊥

g,
[0
,∞

),
⊥

h, [0, 3),⊥

g,
[0
, 4
),
⊥

g,
[0
, 7
),
⊤

f,[0,∞),⊥

h, [0, 7),⊤

f,
[1,

∞),⊤

h,[2,7),⊤

i,[2,2],⊤
q 1st
ar

t

q 2

q 4
q 3

q 5

q 6
q 1

5
q 7

q 1
4

q 1
2

q 9
q 8

q 1
3

q 1
0

q 1
1

a, [0,∞),⊤

f,[1,∞),⊤

b,
[0
,2
],
⊥

c,
[0
, 1
],
⊥

b,
[0
,2
],
⊥

d,
[0
,5
],
⊤

e,
[0
, 5
],
⊤

j, [
0,∞

),⊤

f,[0
,∞),⊤

f,
[0
,2
),
⊥

f,[
2,∞

),⊥

g,
[0
, 2
),
⊥

g, [
2,∞

),⊥

f,[
0,∞

),⊥

f,
[2,

∞),⊥

h,[
0,2

),⊥

h, [2, 3
),⊥

g,
[0
, 2
),
⊥

g,
[2
, 4
),
⊥

h,
[2
,3
),
⊥

g, [
2, 4

),⊥

g,
[0
, 7
),
⊤

g, [2
, 7),

⊤

h,[0
,7),

⊤ h,
[2
,7
),
⊤

f, [
1,∞

),⊤

h,[2,7),⊤

i,[2,2],⊤

Fi
g.

6:
L

ef
t:

T
he

fu
nc

tio
na

l
sp

ec
ifi

ca
tio

n
of

th
e

T
C

P
pr

ot
oc

ol
w

ith
tim

in
g

co
ns

tr
ai

nt
s.

R
ig

ht
:

T
he

le
ar

nt
fu

nc
tio

na
l

sp
ec

ifi
ca

tio
n

of
th

e
T

C
P

pr
ot

oc
ol

.
C

ol
or

s
in

di
ca

te
th

e
sp

lit
tin

g
of

lo
ca

tio
ns

in
cu

rr
ed

in
th

e
le

ar
ni

ng
pr

oc
es

s.

	Learning One-Clock Timed Automata

