
Active Learning of One-Clock Timed Automata

using Constraint Solving

Runqing Xu1,2, Jie An3 and Bohua Zhan1,2

ATVA · October 27, 2022

1State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China

3Max Planck Institute for Software Systems, Kaiserslautern, Germany

Introduction and motivation

1 Introduction and motivation

2 Learning OTA via constraint solving

3 Conclusion and future work

©R. Xu et al. ATVA 2022 @ Beijing 1 / 23

Timed automaton

• Time plays a crucial role in real-world systems (e.g. embedded systems, pro-

tocols).

• Timed automata (finite automata + clock variables) is a popular model of

timed systems.

• As opposed to finite automata, timed automata adds guards and can reset

clocks on transition
g , a,C := 0

Guards g ::= > | x ./ c | g ∧ g

where ./∈ {=, <,≤, >,≥}
Resets

• Timed automata can be used to model and analyze the timing behavior of

computer systems.

©R. Xu et al. ATVA 2022 @ Beijing 2 / 23

Timed automaton

• Time plays a crucial role in real-world systems (e.g. embedded systems, pro-

tocols).

• Timed automata (finite automata + clock variables) is a popular model of

timed systems.

• As opposed to finite automata, timed automata adds guards and can reset

clocks on transition
g , a,C := 0

Guards g ::= > | x ./ c | g ∧ g

where ./∈ {=, <,≤, >,≥}
Resets

• Timed automata can be used to model and analyze the timing behavior of

computer systems.

©R. Xu et al. ATVA 2022 @ Beijing 2 / 23

Timed automaton

• Time plays a crucial role in real-world systems (e.g. embedded systems, pro-

tocols).

• Timed automata (finite automata + clock variables) is a popular model of

timed systems.

• As opposed to finite automata, timed automata adds guards and can reset

clocks on transition
g , a,C := 0

Guards g ::= > | x ./ c | g ∧ g

where ./∈ {=, <,≤, >,≥}
Resets

• Timed automata can be used to model and analyze the timing behavior of

computer systems.

©R. Xu et al. ATVA 2022 @ Beijing 2 / 23

Timed automaton

• Time plays a crucial role in real-world systems (e.g. embedded systems, pro-

tocols).

• Timed automata (finite automata + clock variables) is a popular model of

timed systems.

• As opposed to finite automata, timed automata adds guards and can reset

clocks on transition
g , a,C := 0

Guards g ::= > | x ./ c | g ∧ g

where ./∈ {=, <,≤, >,≥}
Resets

• Timed automata can be used to model and analyze the timing behavior of

computer systems.

©R. Xu et al. ATVA 2022 @ Beijing 2 / 23

Model/Automata learning

• Machine Learning

• a sample set M = {(x , y)|x ∈
X , y ∈ Y }

• learn an function f : X 7→ Y s.t.

∀(x , y) ∈M, f (x) = y
• identify f (x) for all x ∈ X

x1

x2

y = 1

y = 0

f(x)

©R. Xu et al. ATVA 2022 @ Beijing 3 / 23

Model/Automata learning

• Machine Learning

• a sample set M = {(x , y)|x ∈
X , y ∈ Y }

• learn an function f : X 7→ Y s.t.

∀(x , y) ∈M, f (x) = y
• identify f (x) for all x ∈ X

x1

x2

y = 1

y = 0

f(x)

• Model/Automata Learning

• an alphabet Σ

an unknown language L ⊆ Σ∗

• learn an automata A which can

represent L

Σ∗

a∗b(a ∪ b)∗

L

q0

q1

b

a

a, b

learn

©R. Xu et al. ATVA 2022 @ Beijing 3 / 23

Active learning of deterministic one-clock timed automata [1]

Teacher Learner

Membership

Oracle
Observation

Table

γ ∈ L?

yes or no

Learning DOTA without reset information

Example: membership query

ε→ yes (a, 0)→ no (a, 0)(a, 0)→ no q0

start

q1

a, [4, 9] ,⊥

a, [4,∞) ,⊥

©R. Xu et al. ATVA 2022 @ Beijing 4 / 23

Active learning of deterministic one-clock timed automata [1]

Teacher Learner

Membership

Oracle
Observation

Table

γ ∈ L?

yes or no

Learning DOTA without reset information

Example: observation table (one reset)

O ε

ε yes

(a, 0,⊥) no

(a, 0,⊥)(a, 0,⊥) no

q0

start

q1

a, [4, 9] ,⊥

a, [4,∞) ,⊥

©R. Xu et al. ATVA 2022 @ Beijing 4 / 23

Active learning of deterministic one-clock timed automata [1]

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

Hypothesis A

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

Learning DOTA without reset information

Example: equivalence query with reset assignment ⊥ for both transitions

Hypothesis A
q0

start

q1

a, [0,∞) ,⊥

a, [0,∞) ,⊥

→ counterexample γ′ = (a, 4.0).

There are at least 2|S|+|R|−1 choices of resets.

q0

start

q1

a, [4, 9] ,⊥

a, [4,∞) ,⊥

©R. Xu et al. ATVA 2022 @ Beijing 4 / 23

Active learning of deterministic one-clock timed automata [1]

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

Hypothesis A

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

Learning DOTA without reset information

Challenge: need to try each choice of reset, which blow up

exponentially w.r.t the number of transitions [1].

©R. Xu et al. ATVA 2022 @ Beijing 4 / 23

Motivation

• Motivation

• How to learn larger timed automata models efficiently?

• Main idea

• Rather than trying different choices of resets one-by-one, use constraint solving

to determine reset assignments.

• Related work

• Active learning algorithms for deterministic [2] and non-deterministic [3] real-

time automata.
• Active learning algorithm for a new kind of timed models named Mealy Machine

with one timer [7].
• Passive learning of DFAs, Mealy machines, register automata [5] and timed

automata [6] via constraint solving.

©R. Xu et al. ATVA 2022 @ Beijing 5 / 23

Learning OTA via constraint

solving

1 Introduction and motivation

2 Learning OTA via constraint solving

3 Conclusion and future work

©R. Xu et al. ATVA 2022 @ Beijing 6 / 23

Basic idea

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

Logical

Formulas

SMT Solvers

Hypothesis A

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

• Maintaining all available observations in a single observation table.

• Encoding readiness condition as logical formulas on reset assignments.

• Utilizing SMT solvers to determine feasible reset assignments.

©R. Xu et al. ATVA 2022 @ Beijing 7 / 23

Preliminaries

• A one-clock timed automata is a sextuple

(Σ,Q, q0,F , c ,∆).

• Timed words (Σ× R≥0)∗: outside observations;

e.g. ω = ε and ω′ = (a, 4.0)(a, 4.0) are both accept-

ing timed words.

• Reset timed words (Σ × R≥0 × B)∗: record reset

information for each step.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥
a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Definition (Last reset of timed word)

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), and DOTA A. Let

ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset timed word that results

from running ω on A. The last reset kA(ω) is defined to be 0 if bi = ⊥ for all

1 ≤ i ≤ n, and kA(ω) = i if bi = > and bj = ⊥ for all j > i .

• Define νc(w , i) be the value of clock after executing ω if the last reset equals

i , e.g. νc((a, 4.0)(a, 5.5), 1) = 5.5.

©R. Xu et al. ATVA 2022 @ Beijing 8 / 23

Preliminaries

• A one-clock timed automata is a sextuple

(Σ,Q, q0,F , c ,∆).

• Timed words (Σ× R≥0)∗: outside observations;

e.g. ω = ε and ω′ = (a, 4.0)(a, 4.0) are both accept-

ing timed words.

• Reset timed words (Σ × R≥0 × B)∗: record reset

information for each step.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥
a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Definition (Last reset of timed word)

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), and DOTA A. Let

ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset timed word that results

from running ω on A. The last reset kA(ω) is defined to be 0 if bi = ⊥ for all

1 ≤ i ≤ n, and kA(ω) = i if bi = > and bj = ⊥ for all j > i .

• Define νc(w , i) be the value of clock after executing ω if the last reset equals

i , e.g. νc((a, 4.0)(a, 5.5), 1) = 5.5.

©R. Xu et al. ATVA 2022 @ Beijing 8 / 23

Preliminaries

• A one-clock timed automata is a sextuple

(Σ,Q, q0,F , c ,∆).

• Timed words (Σ× R≥0)∗: outside observations;

e.g. ω = ε and ω′ = (a, 4.0)(a, 4.0) are both accept-

ing timed words.

• Reset timed words (Σ × R≥0 × B)∗: record reset

information for each step.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥
a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Definition (Last reset of timed word)

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), and DOTA A. Let

ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset timed word that results

from running ω on A. The last reset kA(ω) is defined to be 0 if bi = ⊥ for all

1 ≤ i ≤ n, and kA(ω) = i if bi = > and bj = ⊥ for all j > i .

• Define νc(w , i) be the value of clock after executing ω if the last reset equals

i , e.g. νc((a, 4.0)(a, 5.5), 1) = 5.5.

©R. Xu et al. ATVA 2022 @ Beijing 8 / 23

Preliminaries

• A one-clock timed automata is a sextuple

(Σ,Q, q0,F , c ,∆).

• Timed words (Σ× R≥0)∗: outside observations;

e.g. ω = ε and ω′ = (a, 4.0)(a, 4.0) are both accept-

ing timed words.

• Reset timed words (Σ × R≥0 × B)∗: record reset

information for each step.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥
a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Definition (Last reset of timed word)

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), and DOTA A. Let

ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset timed word that results

from running ω on A. The last reset kA(ω) is defined to be 0 if bi = ⊥ for all

1 ≤ i ≤ n, and kA(ω) = i if bi = > and bj = ⊥ for all j > i .

• Define νc(w , i) be the value of clock after executing ω if the last reset equals

i , e.g. νc((a, 4.0)(a, 5.5), 1) = 5.5.

©R. Xu et al. ATVA 2022 @ Beijing 8 / 23

Preliminaries

• A one-clock timed automata is a sextuple

(Σ,Q, q0,F , c ,∆).

• Timed words (Σ× R≥0)∗: outside observations;

e.g. ω = ε and ω′ = (a, 4.0)(a, 4.0) are both accept-

ing timed words.

• Reset timed words (Σ × R≥0 × B)∗: record reset

information for each step.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥
a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Definition (Last reset of timed word)

Given a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn), and DOTA A. Let

ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) be the reset timed word that results

from running ω on A. The last reset kA(ω) is defined to be 0 if bi = ⊥ for all

1 ≤ i ≤ n, and kA(ω) = i if bi = > and bj = ⊥ for all j > i .

• Define νc(w , i) be the value of clock after executing ω if the last reset equals

i , e.g. νc((a, 4.0)(a, 5.5), 1) = 5.5.

©R. Xu et al. ATVA 2022 @ Beijing 8 / 23

Alignment and comparison of timed words

• One key step of L∗-style framework: determine if two

words ω1 and ω2 end in different locations.

• To compare two timed words with some suffix e, we

need to align the values of clock before executing e.

This requires knowing the (last) resets for each timed

word.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥

a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Example (Alignment for testing on a suffix)

Consider timed words ω1 = (a, 4), ω2 = ε, suffix e = (a, 5.5), there are two cases

of alignment based on different choices of last resets i1, i2:

1 i1 = i2 = 0, compute νc(ω1, 0) = 4, νc(ω2, 0) = 0, then e1 = (a, 5.5),

e2 = (a, 9.5). MQ(ω1 · e1) = +,MQ(ω1 · e2) = − =⇒
ω1 and ω2 are distinguishable.

2 i1 = 1, i2 = 0, compute νc(ω1, 1) = νc(ω2, 0) = 0, then e1 = e2 = (a, 5.5).

MQ(ω1 · e1) = MQ(ω1 · e2) = + =⇒ ω1 and ω2 are indistinguishable.

©R. Xu et al. ATVA 2022 @ Beijing 9 / 23

Alignment and comparison of timed words

• One key step of L∗-style framework: determine if two

words ω1 and ω2 end in different locations.

• To compare two timed words with some suffix e, we

need to align the values of clock before executing e.

This requires knowing the (last) resets for each timed

word.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥

a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Example (Alignment for testing on a suffix)

Consider timed words ω1 = (a, 4), ω2 = ε, suffix e = (a, 5.5), there are two cases

of alignment based on different choices of last resets i1, i2:

1 i1 = i2 = 0, compute νc(ω1, 0) = 4, νc(ω2, 0) = 0, then e1 = (a, 5.5),

e2 = (a, 9.5). MQ(ω1 · e1) = +,MQ(ω1 · e2) = − =⇒
ω1 and ω2 are distinguishable.

2 i1 = 1, i2 = 0, compute νc(ω1, 1) = νc(ω2, 0) = 0, then e1 = e2 = (a, 5.5).

MQ(ω1 · e1) = MQ(ω1 · e2) = + =⇒ ω1 and ω2 are indistinguishable.

©R. Xu et al. ATVA 2022 @ Beijing 9 / 23

Alignment and comparison of timed words

• One key step of L∗-style framework: determine if two

words ω1 and ω2 end in different locations.

• To compare two timed words with some suffix e, we

need to align the values of clock before executing e.

This requires knowing the (last) resets for each timed

word.

q0

start

q1

q2

a, [4, 9] ,⊥

a, [4,∞) ,⊥

a, [0, 4) .>

a,
[0
, 4

) ,
>

a, [0,+) ,>

a, (9,∞
) ,>

Example (Alignment for testing on a suffix)

Consider timed words ω1 = (a, 4), ω2 = ε, suffix e = (a, 5.5), there are two cases

of alignment based on different choices of last resets i1, i2:

1 i1 = i2 = 0, compute νc(ω1, 0) = 4, νc(ω2, 0) = 0, then e1 = (a, 5.5),

e2 = (a, 9.5). MQ(ω1 · e1) = +,MQ(ω1 · e2) = − =⇒
ω1 and ω2 are distinguishable.

2 i1 = 1, i2 = 0, compute νc(ω1, 1) = νc(ω2, 0) = 0, then e1 = e2 = (a, 5.5).

MQ(ω1 · e1) = MQ(ω1 · e2) = + =⇒ ω1 and ω2 are indistinguishable.

©R. Xu et al. ATVA 2022 @ Beijing 9 / 23

Alignment and comparison of timed words (cont.)

Conside two timed words ω1, ω2, suppose the longest common prefixes of ω1 and

ω2 is m, let C(ω1, ω2) be the set of valid combinations of last resets.

C(ω1, ω2) = {(i1, i2) | 0 ≤ i1 ≤ |ω1| ∧ 0 ≤ i2 ≤ |ω2| ∧ (i1 ≤ m ∧ i2 ≤ m⇒ i1 = i2)}.

Example

Suppose ω1 = (a, 4) and ω2 = (a, 4)(a, 5.5), then

C(ω1, ω2) = {(0, 0), (0, 2), (1, 1), (1, 2)}

But (1, 0) and (0, 1) are not allowed, since the reset choices of (a, 4) are

contradictory.

©R. Xu et al. ATVA 2022 @ Beijing 10 / 23

Alignment and comparison of timed words (cont.)

Conside two timed words ω1, ω2, suppose the longest common prefixes of ω1 and

ω2 is m, let C(ω1, ω2) be the set of valid combinations of last resets.

C(ω1, ω2) = {(i1, i2) | 0 ≤ i1 ≤ |ω1| ∧ 0 ≤ i2 ≤ |ω2| ∧ (i1 ≤ m ∧ i2 ≤ m⇒ i1 = i2)}.

Example

Suppose ω1 = (a, 4) and ω2 = (a, 4)(a, 5.5), then

C(ω1, ω2) = {(0, 0), (0, 2), (1, 1), (1, 2)}

But (1, 0) and (0, 1) are not allowed, since the reset choices of (a, 4) are

contradictory.

©R. Xu et al. ATVA 2022 @ Beijing 10 / 23

Timed observation table

Definition (Observation table)

An observation table O = (S ,S+,R,E , f ,N) is a sextuple, satisfying the following

conditions:

• S ,S+,R are disjoint finite sets of timed words called prefixes. S ∪ S+ ∪ R is

prefix-closed and ε ∈ S . If ω ∈ S∪S+ and σ ∈ Σ, then ω ·(σ, 0) ∈ S∪S+∪R.

• E is a finite set of timed words called suffixes, with ε ∈ E .

• f is a function mapping pairs ω1, ω2 ∈ S ∪ S+ ∪ R and (i1, i2) ∈ C(ω1, ω2) to

B, indicating whether ω1 and ω2 are currently distinguished under last resets

i1, i2.

• N is the current limit on the number of locations in the candidate automaton.

©R. Xu et al. ATVA 2022 @ Beijing 11 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

Prefixes set S indicates certainly distinct timed words (locations in timed

automata);

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

Prefixes set S indicates certainly distinct timed words (locations in timed

automata);

Auxiliary prefixes set S+ indicates timed words that are certainly distinct from

rows in S under some choice of resets (possible locations in timed automata);

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

Prefixes set S indicates certainly distinct timed words (locations in timed

automata);

Auxiliary prefixes set S+ indicates timed words that are certainly distinct from

rows in S under some choice of resets (possible locations in timed automata);

Boundary R indicates the transitions;

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

Prefixes set S indicates certainly distinct timed words (locations in timed

automata);

Auxiliary prefixes set S+ indicates timed words that are certainly distinct from

rows in S under some choice of resets (possible locations in timed automata);

Boundary R indicates the transitions;

Sufffixes set E distinguishes the locations;

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

Reset variables bi denotes whether clock resets after running ωi .

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Timed observation table (cont.)

S ∪ S+ ∪ R
E

ε (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)

S ε b0 > ⊥ ¬b2 ⊥ b4 ⊥
ε

(a, 0) b1 ⊥ > ⊥ > ⊥ >
S+ (a, 4) (a, 5.5) b2 ¬b2 ⊥ > ⊥ ⊥ ⊥ (a, 5.5)

R

(a, 0) (a, 0) b3 ⊥ > ⊥ > ⊥ >
(a, 4) b4 b4 ⊥ ⊥ ⊥ > ⊥

(a, 9.5) b5 ⊥ > ⊥ > ⊥ >

(Innovation) Cells record all membership queries (different from [1]) by comparing

each pair of timed words in S ∪ S+ ∪R under all valid combinations of last resets.

Example: Given suffix e = (a, 5.5), we have

f ((a, 4) , ε, 0, 0) = ⊥, f ((a, 4) , ε, 1, 0) = >

this can be summarized as b4.

©R. Xu et al. ATVA 2022 @ Beijing 12 / 23

Encoding of readiness constraints

Definition (Encoding of last reset)

Given ω = (σ1, t1)...(σn, tn) ∈ S ∪ S+ ∪ R. Let ω|i for 0 ≤ i ≤ n be the prefix of

ω with length i . Since S ∪ S+ ∪R is prefix-closed, we have each ω|i ∈ S ∪ S+ ∪R
as well. Let lr(ω, i), encoding the condition that the last reset of ω equals i , be

defined as follows.

lr(ω, i) , bω|i ∧
∧

i<j≤n

¬bω|j .

Let LR(ω1, ω2, i , j) = lr(ω1, i) ∧ lr(ω2, j).

Let qω ∈ {1, ...,N} represent the location after running timed word ω in the

candidate automation.

©R. Xu et al. ATVA 2022 @ Beijing 13 / 23

Encoding of readiness constraints (cont.)

1 Distinctness of rows: for some choices of resets, if two rows can be

distinguished, then they must be assigned to different locations.

C1(ω1, ω2, i , j) , LR(ω1, ω2, i , j)⇒ qω1 6= qω2 .

C1 ,
∧

ω1,ω2∈S∪S+∪R,
(i,j)∈C(ω1,ω2),
f (ω1,ω2,i,j)=⊥

C1(ω1, ω2, i , j).

2 Consistency: if starting location, action, and region of time is the same,

then reset and ending location are the same.

C2(ω1, ω2, i , j , σ, t1, t2) , qω1 = qω2∧LR(ω1, ω2, i , j)⇒ bω′
1

= bω′
2
∧qω′

1
= qω′

2
.

C2 ,
∧

ω1,ω2∈S∪S+∪R,
ω1·(σ,t1),ω2·(σ,t2)∈S∪S+∪R,

(i,j)∈C(ω1,ω2),f (ω1,ω2,i,j)=>,
Jνc (ω1,i)+t1K=Jνc (ω2,j)+t2K

C2(ω1, ω2, i , j , σ, t1, t2).

©R. Xu et al. ATVA 2022 @ Beijing 14 / 23

Encoding of readiness constraints (cont.)

1 Distinctness of rows: for some choices of resets, if two rows can be

distinguished, then they must be assigned to different locations.

C1(ω1, ω2, i , j) , LR(ω1, ω2, i , j)⇒ qω1 6= qω2 .

C1 ,
∧

ω1,ω2∈S∪S+∪R,
(i,j)∈C(ω1,ω2),
f (ω1,ω2,i,j)=⊥

C1(ω1, ω2, i , j).

2 Consistency: if starting location, action, and region of time is the same,

then reset and ending location are the same.

C2(ω1, ω2, i , j , σ, t1, t2) , qω1 = qω2∧LR(ω1, ω2, i , j)⇒ bω′
1

= bω′
2
∧qω′

1
= qω′

2
.

C2 ,
∧

ω1,ω2∈S∪S+∪R,
ω1·(σ,t1),ω2·(σ,t2)∈S∪S+∪R,

(i,j)∈C(ω1,ω2),f (ω1,ω2,i,j)=>,
Jνc (ω1,i)+t1K=Jνc (ω2,j)+t2K

C2(ω1, ω2, i , j , σ, t1, t2).

©R. Xu et al. ATVA 2022 @ Beijing 14 / 23

Encoding of readiness constraints (cont.)

3 Closedness: each row is assigned a location between 1 and N (optional for

C3: each location between 1 and N is represented by a row in S ∪ S+)

C3 ,
∧

1≤i≤N

∨
ω∈S∪S+

qω = i ∧ C ′3 where C ′3 ,
∧

ω∈S∪S+∪R

1 ≤ qω ≤ N.

4 Special assignments (for speeding-up): rows in S are assigned to fixed,

distinct locations

C4 ,
∧

1≤i≤|S|

qωi = i .

©R. Xu et al. ATVA 2022 @ Beijing 15 / 23

Encoding of readiness constraints (cont.)

3 Closedness: each row is assigned a location between 1 and N (optional for

C3: each location between 1 and N is represented by a row in S ∪ S+)

C3 ,
∧

1≤i≤N

∨
ω∈S∪S+

qω = i ∧ C ′3 where C ′3 ,
∧

ω∈S∪S+∪R

1 ≤ qω ≤ N.

4 Special assignments (for speeding-up): rows in S are assigned to fixed,

distinct locations

C4 ,
∧

1≤i≤|S|

qωi = i .

©R. Xu et al. ATVA 2022 @ Beijing 15 / 23

Smart learner

Build readiness condition C = C1 ∧ C2 ∧ C3 ∧ C4.

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

C1 ∧ C2∧
C3 ∧ C4

SMT Solvers

Hypothesis

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

©R. Xu et al. ATVA 2022 @ Beijing 16 / 23

Smart learner

Send C to SMT solver.

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

C1 ∧ C2∧
C3 ∧ C4

SMT Solvers

Hypothesis

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

©R. Xu et al. ATVA 2022 @ Beijing 16 / 23

Smart learner

SAT

Construct hypothesis model with the assignments of resets and locations.

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

C1 ∧ C2∧
C3 ∧ C4

SMT Solvers

Hypothesis

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

©R. Xu et al. ATVA 2022 @ Beijing 16 / 23

Smart learner

UNSAT

Case 1: C3 is too stringent, no reset assignment can fulfil the closedness condition

=⇒ C := C [C ′3/C3].

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table

C1 ∧ C2∧
C ′

3 ∧ C4

SMT Solvers

Hypothesis

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

©R. Xu et al. ATVA 2022 @ Beijing 16 / 23

Smart learner

UNSAT

Case 2 (C1 ∧ C2 ∧ C ′3 ∧ C4 is still UNSAT): The number of states in SUL is larger

than N =⇒ increase N in observation table.

Teacher Learner

Membership

Oracle

Equivalence

Oracle

Observation

Table[N := N + 1]

C1 ∧ C2∧
C3 ∧ C4

SMT Solvers

Hypothesis

γ ∈ L?

yes or no

L(A) = L?

no with γ′ ∈ L⊕ L(A)

yes (L is learnt successfully)

SAT

UNSAT

©R. Xu et al. ATVA 2022 @ Beijing 16 / 23

Correctness and termination

Theorem (Correctness and termination)

The learning process always terminates and returns a correct DOTA recognizing

the underlying target timed language.

Outline of proof: by comparison with a brute-force of the algorithm that searches

through reset assignments.

©R. Xu et al. ATVA 2022 @ Beijing 17 / 23

Experiment

Table 1: Experimental results on DOTAs.

Group |∆| Method
#Membership #Equivalence

|QH| #Learnt t(s)
Nmin Nmean Nmax Nmin Nmean Nmax

6 2 10 11.9
DOTAL 73 348.3 708 10 16.7 30 5.6 7/10 39.88

SL 104 1894.8 3929 11 20.8 35 5.6 10/10 0.78

4 4 20 16.3
DOTAL 231 317.0 564 27 30.8 40 4.0 6/10 100.22

SL 1740 3497.7 5329 24 32.8 42 4.0 10/10 1.42

7 4 20 26.0 SL 6092 9393.3 15216 44 51.5 69 7.0 10/10 2.90

10 4 20 39.1 SL 8579 16322.3 23726 59 76.5 93 10.0 10/10 5.89

12 4 20 47.6 SL 13780 20345.5 29011 70 88.0 102 12.0 10/10 10.05

14 4 20 58.4 SL 18915 28569.0 40693 92 110.6 126 14.0 10/10 14.69

AKM (17 12 5) 40.0 SL 3453 3453.0 3453 49 49.0 49 12 1/1 7.19

TCP (22 13 2) 22.0 SL 4713 4713.0 4713 32 32.0 32 20 1/1 19.04

CAS (14 10 27) 23.0 SL 4769 4769.0 4769 18 18.0 18 14 1/1 126.30

PC (26 17 10) 42.0 SL 10854 10854.0 10854 28 28.0 28 25 1/1 109.01

Group: each group has ID of the form |Q| |Σ| κ, where |Q| is the number of locations, |Σ| is the size of the

alphabet, and κ is the maximum constant appearing in the clock constraints.

|∆|: average number of transitions of a DOTA in the corresponding group.

Method: DOTAL and SL represent the method in [1] and our method respectively.

#Membership & #Equivalence: number of membership and equivalence queries, respectively. Nmin: minimal,

Nmean: mean, Nmax: maximum. |QH|: average number of locations of the learned automata for each group.

#Learnt: the number of the learnt DOTAs (learnt/total).

t: average wall-clock time in seconds.

©R. Xu et al. ATVA 2022 @ Beijing 18 / 23

Experiment

• Adapted the algorithm to Deterministic Timed Mealy Machines.

• Each transition also contain input/output. Membership query returns the se-

quence of outputs after giving the sequence of inputs.

• Evaluated the algorithm on DTMM versions of AKM, TCP, CAS, PC examples.

Case |Q| |I | |∆| #M #E t(s)

AKM 5 5 28 691 34 2.6

TCP 11 8 19 751 10 1.9

CAS 8 4 17 1654 21 17.1

PC 8 8 24 1194 27 6.8

Table 2: Results on the deterministic timed Mealy machines. |Q|: number of locations.

|I |: number of input actions. |∆|: number of transitions. #M: number of membershp

queries. #E: number of equivalence queries. t(s): wall-clock time in seconds.

©R. Xu et al. ATVA 2022 @ Beijing 19 / 23

Conclusion and future work

1 Introduction and motivation

2 Learning OTA via constraint solving

3 Conclusion and future work

©R. Xu et al. ATVA 2022 @ Beijing 20 / 23

Conclusion and future work

• Contribution

• Propose a new algorithm for active learning of one clock timed automata and

timed Mealy machines with constraint solving. Taking advantage of the ability

SMT solvers to solve large constraints, this algorithm can scale up to larger

timed automata models.
• Incorporate constraint solving into active learning, for determining unknown

data in the observation table.

• Future work

• Extension to multi-clock timed automata and other types of automata.
• Improvements to efficiency of the algorithm (e.g. reducing the number of mem-

bership queries).

©R. Xu et al. ATVA 2022 @ Beijing 21 / 23

Conclusion and future work

• Contribution

• Propose a new algorithm for active learning of one clock timed automata and

timed Mealy machines with constraint solving. Taking advantage of the ability

SMT solvers to solve large constraints, this algorithm can scale up to larger

timed automata models.
• Incorporate constraint solving into active learning, for determining unknown

data in the observation table.

• Future work

• Extension to multi-clock timed automata and other types of automata.
• Improvements to efficiency of the algorithm (e.g. reducing the number of mem-

bership queries).

©R. Xu et al. ATVA 2022 @ Beijing 21 / 23

References i

I Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang.

Learning one-clock timed automata.

In TACAS 2020, pages 444–462. Springer, 2020.

I Jie An, Lingtai Wang, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang.

Learning real-time automata.

Sci. China Inf. Sci., 64(9), 2021.

I Jie An, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang.

Learning nondeterministic real-time automata.

ACM Trans. Embed. Comput. Syst., 20(5s):99:1–99:26, 2021.

I Dana Angluin.

Learning regular sets from queries and counterexamples.

Inf. Comput., 75(2):87–106, 1987.

©R. Xu et al. ATVA 2022 @ Beijing 22 / 23

References ii

I Rick Smetsers, Paul Fiterau-Brostean, and Frits W. Vaandrager.

Model learning as a satisfiability modulo theories problem.

In LATA 2018, pages 182–194. Springer, 2018.

I Martin Tappler, Bernhard K. Aichernig, and Florian Lorber.

Timed automata learning via SMT solving.

In NFM 2022, pages 489–507. Springer, 2022.

I Frits W. Vaandrager, Roderick Bloem, and Masoud Ebrahimi.

Learning Mealy machines with one timer.

In LATA 2021, pages 157–170. Springer, 2021.

©R. Xu et al. ATVA 2022 @ Beijing 23 / 23

	Introduction and motivation
	Learning OTA via constraint solving
	Conclusion and future work

