Optimization-Based Model Checking and Trace Synthesis for Complex STL

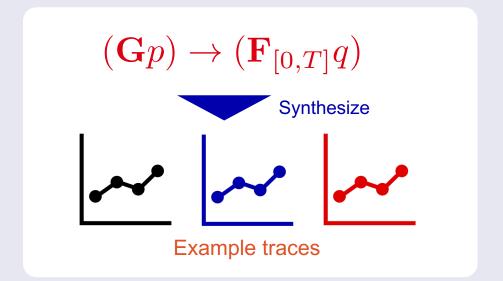
Sota Sato^{1,3}, Jie An^{1,4}, Zhenya Zhang^{1,2}, Ichiro Hasuo^{1,3}

¹National Institute of Informatics, Tokyo, Japan ²Kyusyu University, Fukuoka, Japan ³The Graduate University for Advances Studies (SOKENDAI), Hayama, Japan ⁴Institute of Software, Chinese Academy of Sciences, Beijing, China

Summary

** What we achieved

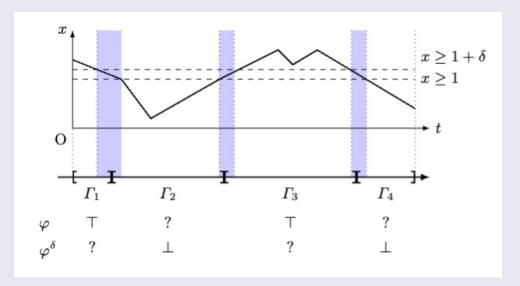
A novel algorithm to quickly <u>synthesize a</u> <u>trace</u> with an STL (signal temporal logic) [Maler & Nickovic, 2004] formula



 Can also solve the dual problem (bounded model checking)

K How we did it

The algorithm is fast due to our novel <u>variable-interval</u> MILP (mixed-integer linear programming) encoding



 Soundness and (weak) completenss of the result are guaranteed

Outline

1. Challenges in Trace Synthesis with Complex STL Formulas

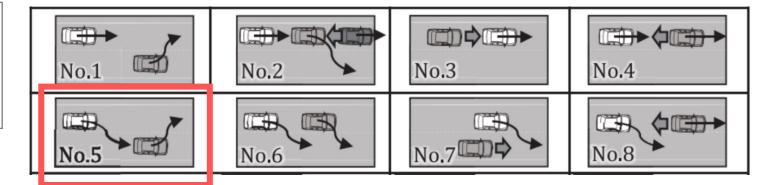
- 2. Previous Works
- 3. Our Algorithm: Variable-Interval MILP Encoding
- 4. Experiments

Motivation

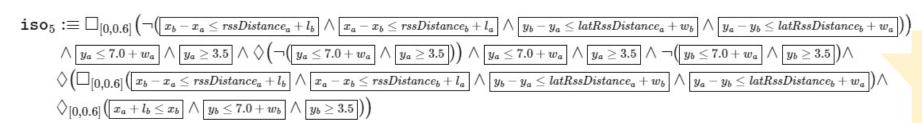
STL formula in real-world problem may be large

Natural-language description (from ISO 34502 critical scenarios)

The subject vehicle cuts in and the preceding other vehicle changes a lane. The traffic situation is initially safe in terms of the RSS safety but eventually gets in danger. (...)



Formalization in STL [Reimann+, SAC'24]



Syntax tree is quite large.

Max depth: 5

Leaves: 25

Nodes: 35

Trace synthesis with STL

Find $\sigma \in \mathcal{L}(\mathcal{M})$ such that $\sigma \models \varphi$

Possible traces of the system model $\mathcal M$

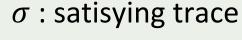
A trace σ satisfies an STL formula φ

Example

$$\sigma \vDash \Diamond_{[0,30]}(RPM > 2250)$$

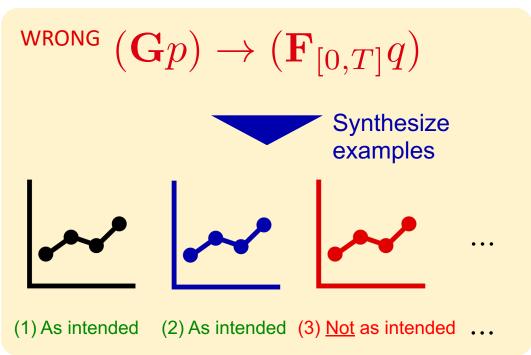
"At some $t \in [0,30]$, RPM is above 2250"

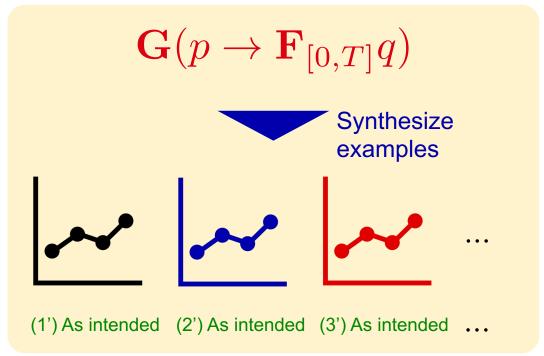
where $\sigma \in \mathcal{L}$



Trace synthesis provides "debugging" of specs

- There can be a difference between what one wrote and what one intended
- Automatic generation of an example trace would help to recognize mistakes





Odd that the <u>third trace</u> is an example of my specification...

My spec looks correct

Existing tools suffer from trace synthesis with complex STL formulas

- Small latency is critical for interactive inspection of STL formulas
- Our benchmarks showed that existing methods were rarely capable of it

It takes **9-500 seconds** to synthesize a trace

	Breach	ForeSee	bluSTL	STLmc
RNC1	59.4	546.8	(¶)	t/o
RNC2	9.3	104.3	14.3	t/o
RNC3	81.3	197.4	(\P)	t/o
NAV1	(44)	(44)	(+)	16.5
NAV2	(*)	(*)	(‡)	10.0
IS01	8.9	t/o		
IS03	t/o	t/o		
IS04	t/o	t/o		
IS05	31.2	435.8	(†)	(†)
IS06	t/o	58.9		
IS07	33.6	187.2		
IS08	38.8	t/o		

Breach [Donzé, CAV'10]

ForeSee [Zhang+, FM'21]

BluSTL [Donzé & Raman, ARCH15]

STLmc [Yu+, CAV'22]

Our experimental result (we revisit it later)

Outline

 Challenges in Trace Synthesis with Complex STL Formulas

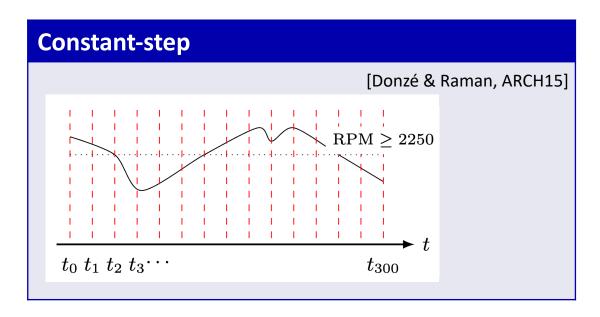
- **2.** Previous Works
 - 3. Our Algorithm: Variable-Interval MILP Encoding
 - 4. Experiments

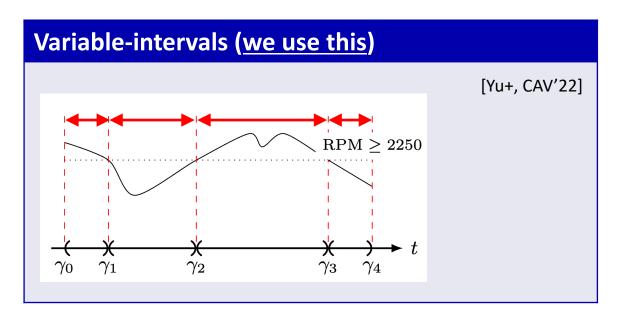
Discretization of the STL semantics: constant vs. variable

Due to its continuous nature (unlike LTL), discretization is required to compute STL semantics

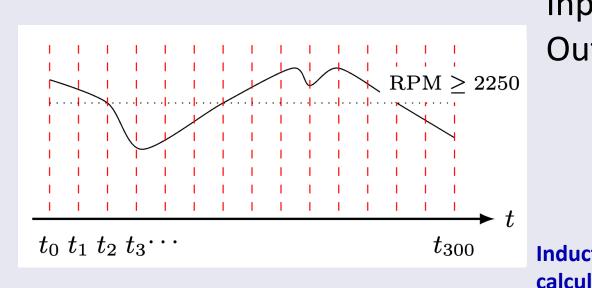
Mathematical definition by first-order logic

$$\sigma \vDash \Diamond_{[0,30]} \left(\Box_{[0,5]} \text{RPM} > 2250 \right) \iff \exists \tau_1 \in [0,30]. \, \forall \tau_2 \in \tau_1 + [0,5]. \, \sigma_{\text{RPM}}(\tau_2) > 2250$$





Constant-step



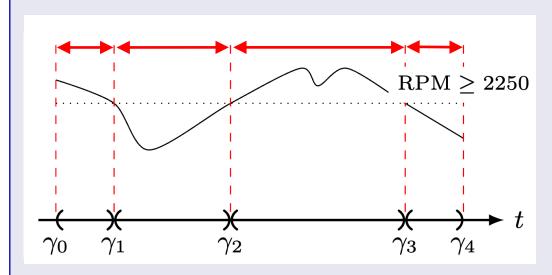
Input: \mathcal{M} , φ , t_0 , ..., t_N

Output: \vec{x}_1 , ..., \vec{x}_N (state sequence)

		t_0	t_2	t_2	•••	t _N
	state	\vec{x}_0	\vec{x}_1	\vec{x}_2	:	$ \vec{x}_N $
	$p \coloneqq RPM > 2250$	Т	Т	Т		\perp
ctive 🦴 lation 🥕	□ _[0,5] p	Т	Т	Т		
\	$\diamond_{[0,30]}(\square_{[0,5]}p)$	Τ	Τ	Η	•••	\perp

- Straightforward discretization
- N should be large for sufficient accuracy => Slowing down SMT/MILP solver
 - E.g., N = 300 in our *iso5* benchmark (10 samples every second)

Variable-interval (we use this)



Input: \mathcal{M} , φ

Output: $(\gamma_0, \vec{x}_0), \dots, (\gamma_N, \vec{x}_N)$ (timed-state

sequence)

Inductive

calculation

_		1/03	(170,17)	1/13	•	(/N)
	state	\vec{x}_0	$\lambda \vec{x}_0 + \bar{\lambda} \vec{x}_1$	\vec{x}_1	:	\vec{x}_N
	p ≔ RPM > 2250	Τ	Т	Т		Т
	□ _[0,5] p	1	Т	Т		Т
	$\diamond_{[0,30]}(\square_{[0,5]}p)$	Τ	Т	Τ	•••	1

- Works with **small** *N* in practice
 - E.g., N = 4 in our *iso5* benchmark

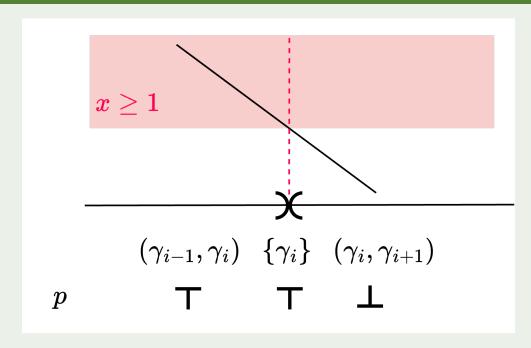
Boolean values must be constant in each **interval** and **subformula**

 $\{y_{i}, y_{i}, y_{i+1}, y_{i$

How to find a stable partition for the variable-interval?

[Bae & Lee, POPL'19]

For <u>atomic proposition</u>



- Put sampling points when crossing the boundary of predicates
- (Assumption: continuous signal and a linear predicate)

How to find a stable partition for the variable-interval?

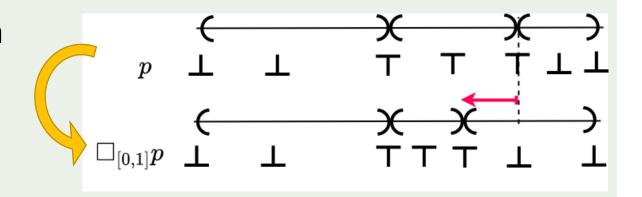
[Bae & Lee, POPL'19]

For Boolean connectives $\psi_1 \wedge \psi_2$, $\psi_1 \vee \psi_2$

Assuming we have stable partitions for both ψ_1, ψ_2 , their refinement is a stable partition for φ

For "Always for" operator $\Box_{[a,b]}\psi$

Can be formulated based on the truth values of subformula and by interval math



Overview of tools

	Solver	Variable- interval	Why slow with complex STL?
Breach [Donzé, CAV'10]	Stoch. opt.	No	Fall into local solution
ForeSee [Zhang+, FM'21]	Stoch. opt. + MCTS	No	Fall into local solution
BluSTL [Donzé & Raman, ARCH15]	MILP	No	Large sample size
STLmc [Yu+, CAV'22]	SMT	Yes	Unscalability of SMT
STLts (our proposed method)	MILP	Yes (with modification)	-

We use MILP + Variable-interval encoding

Outline

Challenges in Trace Synthesis with Complex STL Formulas

2. Previous Works

- 3. Our Algorithm: Variable-Interval MILP Encoding
 - 4. Experiments

Challenge

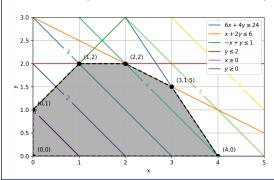
MILP (numerical) cannot faithfully express the variable-interval encoding, unlike SMT (symbolic)

With variable-interval encoding

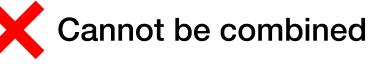
• It manages the truth values of open intervals and singular intervals

With MILP

Only nonstrict inequality ≤ is allowed



https://github.com/BYU-PRISM/GEKKO

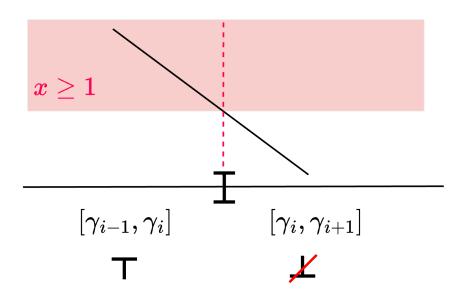


Can we interpret truth values on closed intervals?

Naive idea

- Given: signal σ , STL formula φ
- Find: $\gamma_0 < \cdots < \gamma_N$ such that $\underline{\sigma^t} \models \underline{\varphi} \text{ or } \underline{\sigma^t} \not\models \underline{\varphi}$ is constant on each closed interval $[\gamma_0, \gamma_1], [\gamma_1, \gamma_2], \dots, [\gamma_{N-1}, \gamma_N]$

=> This idea does not work



Not constant at its leftedge

Can we interpret truth values on closed intervals?

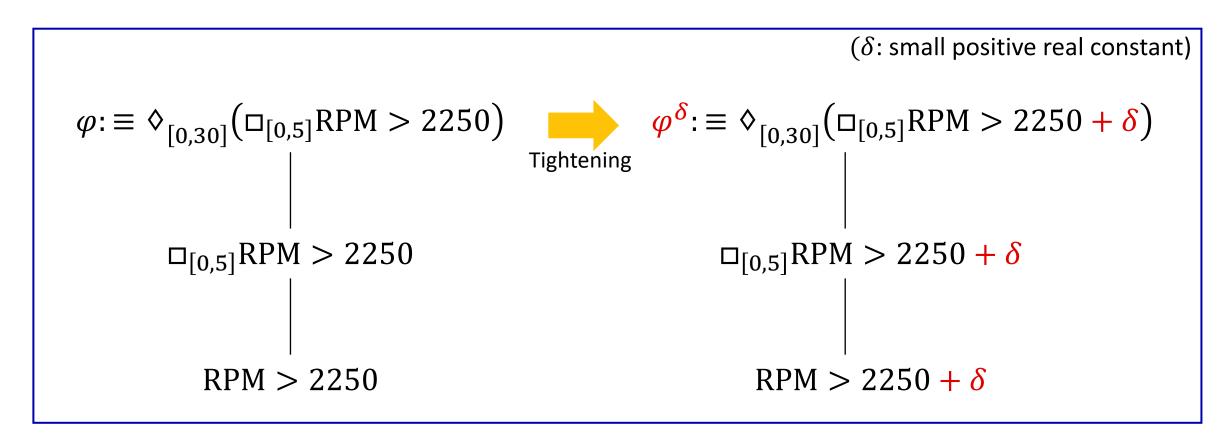
Naiive idea

• Given: signal σ , STL formula φ

	Solver	Variable- interval	Why slow with complex STL?
BluSTL [Donzé & Raman, ARCH15]	MILP	No	Large sample size
STLmc [Yu+, CAV'22]	SMT	Yes	Unscalability of SMT
STLts (our proposed method)	MILP	Yes (with modification)	-

Introducing δ -tightening of formula

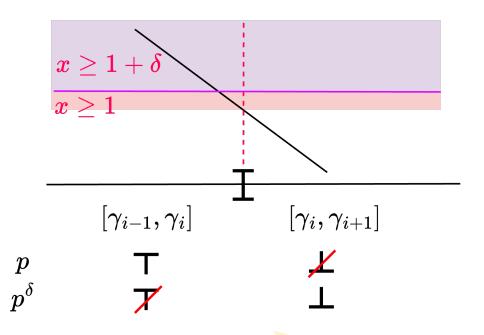
- Purely syntactic modification
- Commutative with subformulas (ψ^{δ} implies ψ for each subformula)



Can we interpret truth values on closed intervals?

Our revised idea

- Given: signal σ , STL formula φ
- Find: $\gamma_0 < \cdots < \gamma_N$ such that $\sigma^t \models \varphi \text{ or } \sigma^t \not\models \varphi^\delta$ is constant on each closed interval $[\gamma_0, \gamma_1], [\gamma_1, \gamma_2], \dots, [\gamma_{N-1}, \gamma_N]$



Constantly $\sigma^t \vDash \varphi$ or $\sigma^t \not\vDash \varphi^\delta$

δ -tightening is consistent with STL semantics

Proposition

Let φ be an STL formula in NNF (negation-normal form), σ be a continuous signal, $\delta > 0$. There exists a sequence $\gamma_0 < \dots < \gamma_N$ for some N such that for each $i \in [1, N]$ and $\psi \in sub(\varphi)$ either of $\sigma^t \models \psi$ or $\sigma^t \not\models \psi^\delta$ is constant on $[\gamma_{i-1}, \gamma_i]$.

		$[\gamma_0,\gamma_1]$	$[\gamma_1, \gamma_2]$		$[\gamma_{N-1}, \gamma_N]$
	state	$\lambda \vec{x}_0 + \bar{\lambda} \vec{x}_1$	$\lambda \vec{x}_{\underline{1}}$	•••	$\lambda \vec{x}_{N-1} + \bar{\lambda} \vec{x}_{N}$
		$+\lambda\vec{x}_1$	$+ \bar{\lambda}\vec{x}_2$		$+ \bar{\lambda} \vec{x}_N$
	р	Т	Т	***	$\perp (\delta)$
Inductive	□ _[0,5] p	$\perp (\delta)$	$\perp (\delta)$	•••	$\perp (\delta)$
calculation	$\diamond_{[0,30]}(\square_{[0,5]}p)$	T	T	•••	$\perp (\delta)$

 $(\perp (\delta))$ is shorthand for $\sigma^t \not\models \psi^\delta$ for any $t \in [\gamma_{i-1}, \gamma_i]$

Our variable-interval MILP algorithm

Trace synthesis problem

Find $\sigma \in \mathcal{L}(\mathcal{M})$ such that $\sigma \models \varphi$

MILP formulation (used in our algorithm)

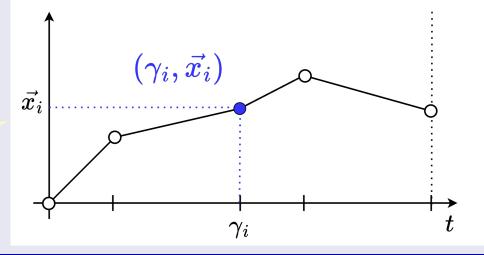
```
Minimize cost(v)

subject to \int v \in Enc(\varphi, \mathcal{M}, N, \delta)

v satisfies the (mixed) integrity condition

where v = [(\gamma_0, \vec{x}_0), ..., (\gamma_N, \vec{x}_N), ... (other auxiliary variables)]
```

A piecewise-linear trace can be represented by variables $\gamma_0, ..., \gamma_N$ and $\vec{x}_0, ..., \vec{x}_N$



Example MILP constraints

(details are not important)

Let $\varphi : \equiv \square_{[0,4]}p$, where $p : \equiv \alpha > 8$:

 γ_i , $x_{i,\alpha}$ must represent a trace of given model

Manage truth values of p in each interval $[\gamma_{i-1}, \gamma_i]$

Manage truth values of $\square_{[0,4]}p$ in each interval $[\gamma_{i-1}, \gamma_i]$

 $\square_{[0,4]}p$ must be true at t=0

Note

- We use the Boolean symbols Λ,V,¬ and the indicator relation ⇒ since they are commonly supported in most MILP solvers
- It is clear that the interval arithmetic in D2.1-D3.3 can be rewritten into MILP constraints

$$egin{aligned} [\mathsf{A1}] \, 0 &= \gamma_0 < \dots < \gamma_N = 10 \ [\mathsf{A2}] \, 0 &\leq x_{i,lpha} \leq 8 \qquad orall i \in [0,N] \ [\mathsf{A3}] \, -1 &\leq (x_{i,lpha} - x_{i-1,lpha}) \cdot (\gamma_i - \gamma_{i-1}) \leq 8 \qquad orall i \in [1,N] \ [\mathsf{A4}] \, x_{0,lpha} &= 0 \end{aligned}$$

$$egin{aligned} ext{[B1]}\,\zeta_i^p &= 1 \Rightarrow x_{i,lpha} - 3 \leq 0, \zeta_i^p = 0 \Rightarrow x_{i,lpha} - 3 > 0 & orall i \in [0,N] \ ext{[B2]}\,\zeta_i^{\delta,p} &= 1 \Rightarrow x_{i,lpha} - 3 \leq \delta, \zeta_i^p = 0 \Rightarrow x_{i,lpha} - 3 > \delta & orall i \in [0,N] \end{aligned}$$

$$\begin{array}{c} \left[\mathsf{C1}\right]\zeta_{i}^{\delta,p} = 0 \wedge \zeta_{i+1}^{\delta,p} = 1 \Rightarrow \zeta_{i}^{p} = 1, \quad \zeta_{i}^{\delta,p} = 1 \wedge \zeta_{i+1}^{\delta,p} = 0 \Rightarrow \zeta_{i}^{p} = 1 \qquad \forall i \in [0,N] \\ \left[\mathsf{C2}\right]\langle p \rangle_{i} = \zeta_{i-1}^{\delta,p} \vee \zeta_{i}^{\delta,p} \end{array}$$

$$\begin{split} & [\mathsf{D}1]\,S_0^p = 0, \\ & \langle p \rangle_i = 0 \Rightarrow S_i^p = 0, \langle p \rangle_i = 1 \Rightarrow S_i^p = S_{i-1}^p + (\gamma_i - \gamma_{i-1}) \qquad \forall i \in [1,N] \\ & [\mathsf{D}2.1]\, \neg \langle \varphi \rangle_i \vee ([\gamma_{i-1} + 0, \gamma_i + 4] \cap (\gamma_{j-1}, \gamma_j] \neq \emptyset) \vee \langle p \rangle_j \qquad \forall i \in [1,N], j \in [i,N] \\ & [\mathsf{D}2.2]\, \neg \langle \varphi \rangle_i \vee (\gamma_i + 4 \leq \gamma_N) \vee \langle p \rangle_j \qquad \forall i \in [1,N] \\ & [\mathsf{D}3.1]\, \langle \varphi \rangle_i \vee (\gamma_j \not\in (\gamma_{i-1} + 4, \gamma_i + 4)) \vee (S_i^p \leq 4 - 0) \qquad \forall i \in [1,N], j \in [i,N] \\ & [\mathsf{D}3.2]\, \langle \varphi \rangle_i \vee (\gamma_{i+b} \not\in [\gamma_{j-1}, \gamma_j]) \vee (S_i^p \leq \gamma_j - \gamma_i - 0) \qquad \forall i \in [1,N], j \in [i,N] \\ & [\mathsf{D}3.3]\, \langle \varphi \rangle_i \vee (\gamma_{i+b} \leq \gamma_N) \vee S_i^p \leq \gamma_N - \gamma_i - 0 \qquad \forall i \in [1,N] \end{split}$$

$$\mathsf{[E1]}\,\langle\varphi\rangle_1=1$$

Correctness of our encoding

- With δ small enough and N large enough, our algorithm can always find a satisfying trace (if exists).
 - In most application, this is not really a limitation.

Soundness (Theorem 4.17)

Let φ be an STL formula in NNF (negation-normal form), \mathcal{M} be a model, $N \in \mathbb{N}$, and $\delta > 0$. If a feasible solution v lies in our MILP constraints $\text{Enc}(\varphi, \mathcal{M}, N, \delta)$, the induced trace σ has $\sigma \in \mathcal{L}(\mathcal{M})$ and $\sigma \models \varphi$.

Completeness up to δ and N (Theorem 4.18)

Assume the setting above. If there is a piecewise-linear $\sigma \in \mathcal{L}(\mathcal{M})$ such that $[\![\sigma, \varphi]\!] \geq \delta$ (the quantitative sementics is greater than δ), there is an feasible solution v that lies in $\mathrm{Enc}(\varphi, \mathcal{M}, N, \delta)$ for some $N \in \mathbb{N}$.

Outline

 Challenges in Trace Synthesis with Complex STL Formulas

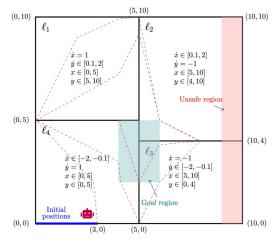
- 2. Previous Works
- 3. Our Algorithm: Variable-Interval MILP Encoding
- **4.** Experiments

Experimental setting

Tools

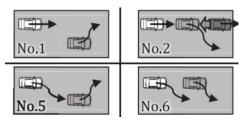
	Supported class of model	Variable- interval
Breach [Donzé, CAV'10]	Black-box	No
ForeSee [Zhang+, FM'21]	Black-box	No
BluSTL [Donzé & Raman, ARCH15]	White-box (MILP)	No
STLmc [Yu+, CAV'22]	White-box (<u>SMT</u>)	Yes
STLts (our proposed method)	White-box (MILP)	Yes

Benchmark models and specs



Navigation of robot in a room (nondeterministic linear dynamics) [Bu+, ARCH22]

 $\Diamond(\Box_{[0,3]}((x,y)\in {\tt goalR})) \land \Box(x\not\in {\tt unsafeR})$



Rear-end near collision & ISO34502 (quadratic dynamics)

$$\begin{array}{l} \left(\square(x_{\mathbf{f}}-x_{\mathbf{r}}\geq 0)\right) \wedge \\ \diamondsuit_{[0,9]}\left(\left(\square_{[0,1]}\mathsf{danger}\right) \wedge \left(\square_{[0,1]}a_{\mathbf{r}}\geq 1\right) \wedge \left(\diamondsuit_{[1,5]}\neg\mathsf{danger}\right) \end{array}$$

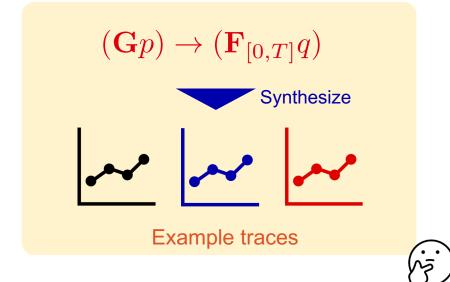
Experimental results

Our tool

	STLts	Breach	ForeSee	bluSTL	STLmc
RNC1 RNC2 RNC3	0.1 (3) 0.3 (4) 0.1 (3)	59.4 9.3 81.3	546.8 104.3 197.4	(¶) 14.3 (¶)	t/o t/o t/o
NAV1 NAV2	32.5 (17) 2.1 (11)	(*)	(*)	(‡)	16.5 10.0
IS01 IS03 IS04 IS05 IS06 IS07 IS08	0.4 (3) 0.2 (2) 0.4 (2) 9.9 (4) 2.4 (4) 0.6 (3) 1.5 (3)	8.9 t/o t/o 31.2 t/o 33.6 38.8	t/o t/o t/o 435.8 58.9 187.2 t/o	(†)	(†)

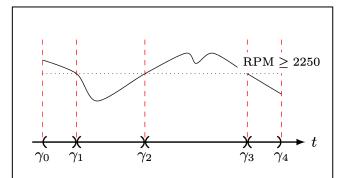
Time (sec) to synthesize a trace

Latency small enough (0.1~9.9s) for interactive inspection of STL specs

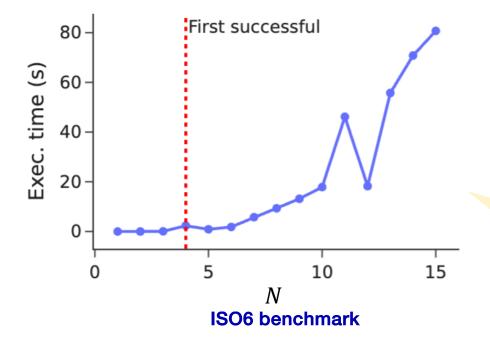


How should we choose the constant N?

- N should be sufficiently large for completeness
- In practice, start with a small N and incrementally try a larger N



N is the number of variable-intervals (Here N=4)



Computational cost is **low if** *N* **is small**

Conclusion:

- First practical algorithm for handling <u>complex STL</u> formulas
 - Demonstrated with a real-world ISO example
- Proposed a consistent framework, $\underline{\delta}$ -stability, to relax the stable partitioning

Future work:

- Application to falsification problem of <u>black-box models</u>
- Generate <u>diverse examples</u> as desired by users

	Class of model	Variable- interval
Breach [Donzé, CAV'10]	Black- box	No
ForeSee [Zhang+, FM'21]	Black- box	No
BluSTL [Donzé & Raman, ARCH15]	MILP	No
STLmc [Yu+, CAV'22]	SMT	Yes
STLts (ours)	MILP	Yes