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° Model learning and L* algorithm
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Model/Automata learning

e Machine learning
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Model/Automata learning

e Machine learning

Model

f:X—=Y

learn ) fix) =y, Vxe X

predict or identify f(x)

asample set
M={(xylxe X yeY}

forallx e X

e Model/Automata learning

Model

fis a language

learn a LCx*

The modelis a kind of

Y is an alphabet
X = ¥* set of words

Y = {+, —} or other set of labels Automaton
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Model/Automata learning
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© The figure comes from Irini-Eleftheria Mens.
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A prehistory and history

1956 Edward Moore. Gedanken-experiments on sequential machines.
e Defines the problem as a black box model inference.
1972 E. Mark Gold. System identification via state characterization.
e Learning finite automata is possible in finite time. First use the basic idea on table-based methods.
1987 Dana Angluin. Learning regular sets from queries and counter-examples.
e The L* active learning algorithm with membership and equivalence queries. Polynomial in the automaton size.
1993 Ronald Rivest and Robert Schapire. Inference of Finite automata using homing sequences.
e Animproved version of L* by using the breakpoint method to treat counterexamples.

2014 Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm : a redundancy-free approach to active
automata learning.
e A redundancy-free organization of observations based on Discrimination Trees.
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Minimally adequate teacher (MAT)

e Dana Angluin proposed an online, active, and exact learning framework L* for Deterministic Finite Automata
(DFA) in 1987.

e Two kinds of queries : membership query and equivalence query.
e Table conditions : closed and consistent.

uel?

Learner Teacher
es(+) or no(—

Vet ) Membership

observation oracle

table LA) = 17
nowith v € L(A) & L

Equivalence

oracle

) yes
hypothesis A

——> Output A
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Myhill-Nerode theorem

e The Myhill-Nerode theorem : a language L is regular iff ~; has a Finite number of equivalence classes, and
moreover, that this number is equal to the number of states in the minimal DFA.

e Right congruence relation ~; :Foru,ve X%, u~, viffYywe " uwe L <= vw e L
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Myhill-Nerode theorem

e The Myhill-Nerode theorem : a language L is regular iff ~; has a Finite number of equivalence classes, and
moreover, that this number is equal to the number of states in the minimal DFA.

e Right congruence relation ~; :Foru,ve X%, u~, viffYywe " uwe L <= vw e L

o Intuitively, L* algorithm aims at finding the suffixes(cols) wto distinguish the prefixes(rows) u, v. Each prefix
can reach a state in the underlying minimal DFA.

b a

a b
start —> w

® vy b ~ aa,
ab ~, aba,
a~; abb

e Closed: For every row from U, there is a equal row in U. If not, move the prefix to U.

e Consistent: For every two rows u, vfrom U, if their rows are equal, then the rows of uo and vo are equal. If not,
extend V.

e Counterexample process : add all prefixes of a counterexample to U.
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e More recent work extends L* to different models

® e.g., Mealy machines [9], I/O automata [1], register automata [5], NFA [2], Biichi automata [6], symbolic automata [7, 3]
and MDP [10], etc..

e Motivation
e How to actively learn a timed model for a real-time system?
e Related work

e Active learning of event-recording automata [4].

e Passive identification of deterministic one-clock timed automata in the limit via fitting a labelled sample
S=(54,5-)[12].

e Passive learning of timed automata via Genetic Programming and testing [11].
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Q Active Learning of DOTAs [TACAS20]

Learning from a smart teacher
Learning from a normal teacher
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Timed automata

e As opposed to finite automata, timed automata are equipped with clocks and add guards and can reset clocks

on transitions
O—22" =0
4

/

Guardsg:= T | X< C|gA g
wheree {=, <, <, >, >}

Resets

Example : Timed automata

aqy>1,y:=0
e Clocks: x, y, Alphabet ¥ := {a, b, c}
o (Delay) Timed words (X x R>)" :eg. (a,1)(b,0.5)
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Challenges on active learning of timed automata

e Fundamental obstacle : Do not have a Myhill-Nerode-like theorem for (regular) timed languages...
e Tech. challenges (continuous-time, black-box)

s Determining how many clocks.
# Infinite states (pair of a location and a clock valuation).
# Determining timing constraints on transitions.
s Determining clock resets on transitions.
# (Related to the previews points) Mapping observable delay timed behaviours from outside to internal logical clock
valuations.
e Active learning of deterministic timed automata with a single clock (DOTAs).
e Solution of learning DOTAs [TACAS 20]
®© A connection between learning from delay timed words (outside) and learning from logical timed words (inside).
® utilize a partition function to map logical-timed valuations to finite intervals.

® First consider a smart teacher who can tell the learner reset information. Then drop the assumption (i.e. reduction to a
normal teacher) by guessing the resets.
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Deterministic One-clock timed automata

e The DOTA A recognizes the target language L.

e ¥ ={a,b}; B={T,L}where T is for reset, L otherwise.
An example of DOTA

b,[0,00), T b,[2,4), T

start »g—) (L3
A
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Deterministic One-clock timed automata

e The DOTA A recognizes the target language L.

e ¥ ={a,b}; B={T,L}where T is for reset, L otherwise.

e Timed words (X x R>()* : outside observations;
e.g.w = (b,1)(a,1.1)(b, 1) is an accepting timed words.

¢ Reset-logical timed words (X x R>o x B)* :inside logical

aCtiOnS; start »Mg
eg.vr= (b1, T)(a,1.1,L)(b,2.1,T) is the reset-logical @ A
counterpart of w.

Logical counterpart v = (b,1)(a,1.1)(b,2.1).

b,[0,00), T b,[2,4), T
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Learning from a smart teacher

e Given a DOTA A, L/(.A) represents the recognized reset-logical timed language of A;
L(A) represents the (delay) timed language.

Given two DOTAs A and H, if L(A) = L(H), then L(A) = L(H).
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Learning from a smart teacher

e Given a DOTA A, L/(.A) represents the recognized reset-logical timed language of A;
L(A) represents the (delay) timed language.

e Guiding principle : learning the timed language of a DOTA A can be reduced to learning the reset-logical timed
language of A

e Smart teacher setting

e Membership queries are logical timed words, teacher responds with reset information.
e For equivalence queries, instead of checking directly whether L(#) = L/(.A), the contraposition of the theorem
guarantees to perform equivalence queries over their timed counterparts (checking £(H) = L(.A)).

Given two DOTAs A and H, if L(A) = L(H), then L(A) = L(H).
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Learning from a smart teacher

(a,1.1)
+

(a,1.1,1)
(a,0,T)

(b,0,

(a,1.1, 1)(a,0,
(a,1.1, L)(b,0,T) | — —
(a,1.1,1)(b,2,T)
(av?’vT) - -
(a,0,T)(a,1.1,T) | — —
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Learning from a smart teacher

E
T (all)) e Observation table 7 = (%, S, R, E, f)
( S N + o The prefixes set Sindicates the different locations
(a.1.1..1) + - e The extended prefixes Rindicates the transitions
R (a,0,T) ) — — o The suffixes set E distinguishes the locations.
(b0, T) | — + e The mapping flw - e) = + iff MQ(w - e) = + for
(a,1.1,1)(a,0,T) | — — Vw € SUR ec E

(a,1.1,L)(b,0, T) | — —
(a,1.1, L)(b,2, T) | + =

(av?’vT) - -
(a,0,T)(a,1.1,T) | — —

e Function val: (SUR) — (E — {+, —}) helps to label the
locations, e.g., g—+, G+—, G——.
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Learning from a smart teacher

E
T (all)) e Observation table 7 = (%, S, R, E, f)
( S N + o The prefixes set Sindicates the different locations
(a.1.1..1) + - e The extended prefixes Rindicates the transitions
R (a,0,T) ) — — o The suffixes set E distinguishes the locations.
(b0, T) | — + e The mapping flw - e) = + iff MQ(w - e) = + for
(a,1.1,1)(a,0,T) | — — Vw € SUR ec E

(a,1.1,1)(b,0,T) | — =
(a,1.1,1)(b,2,T) | + =

(av?’vT) - -
(a,0,T)(a,1.1,T) | — —

e Function val: (SUR) — (E — {+, —}) helps to label the
locations, e.g., g—+, G+—, G——.

e Table conditions :
e Reduced:Vs,s' € S:s# s implies val(s) # val(s');
e closed:Vre R, 3s € S: val(s) = val(r);
. Con5|stent
Yyr, € SuU R val(yr) = wval(y,") implies Ual('y,- or) = wval(y/ - o), forallo,, o,/ € X, satisfying
Ve oy o € SURand Il oy0, = Iy, 2}(7,
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Learning from a smart teacher

T | e )
el - (,3,T) (5,2,T)
(a,1.1,1) | + (a,0,T)
Egg ¥; B start %F (@11, 1)
(a,1.1,1)(a,0,T) | —
(a,1.1, 1)(b,0,T) | — (6,0,T) (a,0,T)
O “ES Q{R ir M (b,0,T)

Figure 1 - The prepared timed observation table 7, the corresponding DFA M and hypothesis H.

e Partition function maps a list of clock valuations £ = 7o, 71, - - , 7o With | 7;] # [7j] to {lo, /1, ..., In} with
Ui = R>o,
[’7’,‘,7‘,‘+1), if T,‘EN/\T[+1EN;
I (Irih 7ien),  0F 7 € Ry \NATLy €N
[7is [mip1]], P € NATH € Ryo \ N

(\_T,'J, \_T,'+1H7 if Ti € [RZO \ IN/\TH,l S lRZO \ N.
e e.g.,/4q ,a={0,1.1,3} and then get the intervals [0, 1],(1, 3) and [3, o).
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Learning from a smart teacher

e Given a target timed language £ which is recognized by a DOTA A, let n = | Q| be the number of locations of A,
m = |X| the size of the alphabet, and « the maximal constant appearing in the clock constraints of .4, and hbe
the length of the longest counterexample returned by the teacher.

The learning process with a smart teacher terminates and returns a DOTA which recognizes the target timed language L.

The complexity is O (hmn* k).
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Learning from a normal teacher

e In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset
information in answers to membership and equivalence queries.

e The learner guesses the resets in order to convert between delay and logical timed words.

© Jie An CyPhAI Workshop @ NIl 18/33



Learning from a normal teacher

e In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset
information in answers to membership and equivalence queries.

e The learner guesses the resets in order to convert between delay and logical timed words.

e Basic process

e At every round, guess all needed resets and put all resulting table candidates into a set ToExplore;
e Take out one table instance from the set ToExplore;
e The operations on the table are same to those in the situation with a smart teacher.

Smart teacher situation Normal teacher situation

. ckx
J/ctx with resets \/

Guessing every reset in the ctx.
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Learning from a normal teacher

e Termination and complexity

e At every iteration, the learner selects the table instance which requires the least number of guesses.

e The learner keeps the correct table instance of each iteration in ToExplore since he guesses all reset information.

e IFT = (X, S, R, E, f) is the final observation table for the correct candidate in the situation with a smart teacher, the
learner can find it after checking 0 (2(*1 TR * (1T Xeger ey (e =Ry
normal teacher.

e The process also may terminate and return a DOTA which is different to the one in the smart teacher situation.

The learning process with a normal teacher terminates and returns a DOTA which recognizes the target timed language L.

table instances in the worst situation with a
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Table 1 - Experimental results on random examples for the smart teacher situation.

Case ID | A mean #Membership #Equivalence - tmean
Nmin Nmean Nmax Nm|n Nmean Nmax
4.4 20 16.3 118 245.0 650 20 30.1 42 4.5 24.7
7_2_10 16.9 568 920.8 1393 23 313 37 9.1 14.6
7_4_10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0
7_6_10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6
7_4.20 343 411 1183.4 1890 52 70.5 93 9.5 101.7
10_4_20 39.1 920 1580.9 2160 61 731 88 11.7 186.7
12_4_20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8
14_4_20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID : n_m_x, consisting of the number of locations, the size of the alphabet and the maximum constant appearing
in the clock constraints, respectively, of the corresponding group of A'’s.

| A|mean : the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conducted membership and equivalence queries, respectively. N, : the
minimal, Nmean : the mean, Nmax : the maximum.

Nmean : the average number of locations of the learned automata in the corresponding group.

tmean : the average wall-clock time in seconds, including that taken by the learner and by the teacher.
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Experiment 2

FINWAIT — 2
%0,
2

Figure 2 — Left : The functional specification of the TCP protocol with more complex timing constraints. Right : The learned functional specification of
the TCP protocol. Colors indicate the splitting of locations.
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Table 2 - Experimental results on random examples for the normal teacher situation.

Case ID A |mean #Membership #Equivalence Mmean tmean  #Teypiored #learnt
Nmin Nmean Nmax  Nmin Nmean Nmax

3.2_10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10

4210 6.8 67 134.0 345 6 133 24 4.0 7.4 563.0 10/10

5.2_10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10

6_2_10 11.9 73 3483 708 10 16.7 30 5.6 59.8 5077.6 7/10

4420 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the cached methods,
respectively. Ny : the minimal, Nmean : the mean, Nmax : the maximum.

#T, 4 - the average number of the explored table instances.

explore

#Learnt : the number of the learnt DOTAs in the group (learnt/total).
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Short conclusion

e Give an active learning algorithm with a smart teacher for DOTAs. It is an efficient (polynomial) algorithm.
(white-box or gray-box)

e Give an active learning algorithm with a normal teacher for DOTAs. It has an exponential complexity increase.
(black-box)

e DOTAs can be actively learned.
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9 Active learning of DOTAs using Constraint solving [ATVA22]

Learning DOTAs using constraint solving
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Learning DOTASs using constraint solving

s Brute-force guessing leads to exponential number of table instances, which limits the scalability of the
algorithm in practical applications.

Smart teacher situation Normal teacher situation

. ctx
lctx with resets \/

Guessing every reset in the ctx.

® Basicideas : maintain a single observation table that collects all results from previous membership queries,
rather than one observation table for each possible choice of resets.
1 Associate each row with a boolean variable representing reset information after running the timed word.
2 Encode the table conditions into the SMT formulas with the variables.
3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.
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Go back to Nerode’s right congruence

e Right congruence relation ~; : For u,ve %, u~; viffYwe * uwe L < vwe L.

e One key step of L*-style framework : determine if two words w; and w» end in different locations using some
suffixes.
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Go back to Nerode’s right congruence

e Right congruence relation ~; : For u,ve %, u~; viffYwe * uwe L < vwe L.

e One key step of L*-style framework : determine if two words w; and w» end in different locations using some
suffixes.

®© If uand vreach the same location, then uwand vw should reach some same location.

u w
|~~~ iuw e L
u
w
-~~~ Same +/—
V,
. LARARS — vw¢ L
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Go back to Nerode’s right congruence

e Right congruence relation ~; : For u,ve %, u~; viffYwe * uwe L < vwe L.
e One key step of L*-style framework : determine if two words w; and w2 end in different locations using some

suffixes.
®© If uand vreach the same location, then uwand vw should reach some same location.

u w
va\/v\/—OJ\/\/\/‘—»«FqueL
u
w
-~~~ Same +/—
V,
WV\/‘/V\/V—)OA/\V}/\/\—» —vwé L

# How to compare two timed words w; and ws using some suffixes e?
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Go back to Nerode’s right congruence

e Right congruence relation ~; : For u,ve %, u~; viffYwe * uwe L < vwe L.

e One key step of L*-style framework : determine if two words w; and w» end in different locations using some
suffixes.

®© If uand vreach the same location, then uwand vw should reach some same location.

u w
va\/v\/—OJ\/\/\/‘—»«FqueL
u
w
-~~~ Same +/—
V,
WV\/‘/V\/V—)OA/\V}/\/\—» —vwé L

# How to compare two timed words w; and ws using some suffixes e?
e Even if w; and ws reach the same location, w; e and w2 e may reach two different locations.

e Forexample, w; = (a,2) andws = (a,3),e= (b, 1)
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Learning DOTASs using constraint solving

# Two timed words reach the same location, however may reach different locations after appending the same
suffix. (Belong to different regions)

® Alignment and comparison : a method to determine whether two timed words are distinguished using membership
queries with unknown reset information.
® A method to encode table conditions into the SMT formulas using the variables.

® Basicideas : maintain a single observation table that collects all results from previous membership queries,
rather than one observation table for each possible choice of resets.

1 Associate each row with a boolean variable representing reset information after running the timed word.
2 Encode the table conditions into the SMT formulas with the variables.
3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.
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Learning DOTASs using constraint solving

o SUSLUR c
e | (a,0) | (a,4)(a55) | (a,0)(a,0) | (a,4) | (a9.5)
S € bo T il —bs il b3 €L
(a,0) by | L T 1 T 1L T ¢
7 (a,4)(a,5.5) b5 | —bs 1 T 1 1 1 (a,5.5)
(@,0)(a,0) by | L T 1 T 1 T
R (a,4) bs | bs 1 1 1 T 1
(a,9.5) by | L T 1 T 1 T

©®© 0={%,SS,RE[ N}
e Scontains timed words that are certainly distinct from each other;
e S, :additional rows in the observation table that are distinct from rows in Sunder some choices of resets.
e Rcollects all current membership queries under all different choice of resets.
e fsummarizes when two corresponding timed words are distinguished, using formulas in terms of ending reset variables b.
e Nis the current limit on the number of locations in the candidate automaton.
e Reset variables b; denotes whether clock resets after running w;.
e (Innovation) Cells record all membership queries by comparing each pair of timed words in SU S U Runder all
valid combinations of last resets.
Example : Given suffix e = (a,5.5), we have

f((a,4),€,0,0) = L, f((a,4),¢,1,0) =T
this can be summarized as bs.
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Experiment 4

Table 3 - Experimental results on learning DOTAs using constraint solving.

#Membership #Equivalence

Group (AN Method [Qg¢ | #Learnt t(s)
Nin Nmean Nmax Nnin Nmean Nmax
6210 1.9 DOTAL 73 348.3 708 10 16.7 30 5.6 7/10 39.88
- o S 104 1894.8 3929 1" 20.8 35 5.6 10/10 0.78
4420 163 DOTAL 231 317.0 564 27 30.8 40 4.0 6/10 100.223
- N S 1740 3497.7 5329 24 32.8 42 4.0 10/10 1.42
DOTAL - 0/10 TO
7420 230 S8 6092 9393.3 15216 44 51.5 69 7.0 10/10 2.90
DOTAL - 0/10 TO
10420 ] S8 8579 163223 23726 59 76.5 93 10.0 10/10 5.89
DOTAL - 0/10 TO
12420 s SL 13780 20345.5 29011 70 88.0 102 12.0 10/10 10.052
DOTAL - 0/10 TO
14.4.20 g SL 18915 28569.0 40693 92 110.6 126 14.0 10/10 14.692
AKM - DOTAL = 0/1 TO
(17_12_5) SL 3453 3453.0 3453 49 49.0 49 12 171 7.19
TCP 2 DOTAL - 0/1 TO
(22_13_2) SL 4713 4713.0 4713 32 32.0 32 20 1,1 19.04
CAS 23 DOTAL - 0/1 TO
(14_10_27) SL 4769 4769.0 4769 18 18.0 18 14 1,1 126.30
PC 42 DOTAL = 0/1 TO
(26_17_10) SL 10854 10854.0 10854 28 28.0 28 25 1,1 109.01
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o Conclusion and future work
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Conclusion

e Currentresults

e Learning DOTAs from a smart teacher (gray-box or white-box, efficient)
and from a normal teacher ' (black-box, inefficient);
e Learning DOTAs using constraint solving ? (black-box, scalable);
e Extending in the PAC learning scheme when the exact equivalence oracle is not available *;
e Adapting to learning real-time automata “.

e Ongoing work
e Active learning of multi-clocks timed automata avoiding just mimicking region graphs.
e Which kind of Myhill-Nerode Theorem for deterministic timed automata we can have. [8]
o How compact the congruence relation can be.
e Passive learning from observations.
e Robust learning.
e Multi-objects learning from demonstrations. (Involving heuristic methods)

. Jie An, Mingshuai Chen, Bohua Zhan, et al.. Learning One-Clock Timed Automata. TACAS'20.

. Runging Xu, Jie An*, Bohua Zhan. Active Learning of One-Clock Timed Automata using Constraint Solving. ATVA'22.
. Wei Shen, Jie An*, et al. PAC Learning of Deterministic One-Clock Timed Automata. ICFEM'20

. Jie An, Bohua Zhan, et al.. Learning nondeterministic real-time automata. IEEE-TECS (EMSOFT'21).
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