# Active learning of One-Clock Timed Automata

Jie An

## Joint work with Mingshuai Chen, Runqing Xu, Bohua Zhan, et al.

CyPhAl Workshop @ NII, Tokyo, Nov. 15, 2022

### Model learning and L\* algorithm

### 2 Active Learning of DOTAs [TACAS20]

- Learning from a smart teacher
- Learning from a normal teacher

### **3** Active learning of DOTAs using Constraint solving [ATVA22]

Learning DOTAs using constraint solving

### **4** Conclusion and future work

### Model learning and L\* algorithm

### 2 Active Learning of DOTAs [TACAS20]

### 3 Active learning of DOTAs using Constraint solving [ATVA22]

### 4 Conclusion and future work

• Machine learning



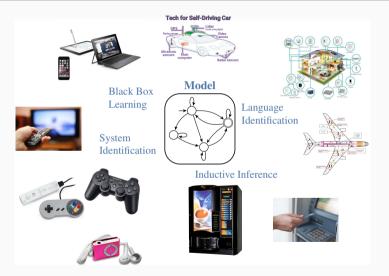
• Machine learning



• Model/Automata learning



## Model/Automata learning



© The figure comes from Irini-Eleftheria Mens.

#### 1956 Edward Moore. Gedanken-experiments on sequential machines.

• Defines the problem as a *black box* model inference.

### 1972 E. Mark Gold. System identification via state characterization.

• Learning finite automata is possible in finite time. First use the basic idea on table-based methods.

### 1987 Dana Angluin. Learning regular sets from queries and counter-examples.

• The L\* active learning algorithm with membership and equivalence queries. Polynomial in the automaton size.

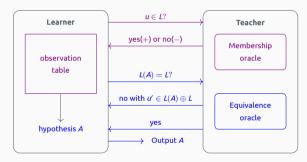
#### 1993 Ronald Rivest and Robert Schapire. Inference of finite automata using homing sequences.

- An improved version of *L*\* by using the *breakpoint method* to treat counterexamples.
- 2014 Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm : a redundancy-free approach to active automata learning.
  - A redundancy-free organization of observations based on Discrimination Trees.

•••••

## Minimally adequate teacher (MAT)

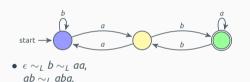
- Dana Angluin proposed an online, active, and exact learning framework *L*\* for Deterministic Finite Automata (DFA) in 1987.
- Two kinds of queries : membership query and equivalence query.
- Table conditions : **closed** and **consistent**.

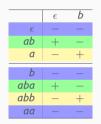


- The Myhill-Nerode theorem : a language *L* is **regular** iff ~*L* has a **finite** number of equivalence classes, and moreover, that this number is equal to the number of states in the minimal DFA.
  - Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .

 $a \sim_L abb$ 

- The Myhill-Nerode theorem : a language L is regular iff ∼L has a finite number of equivalence classes, and moreover, that this number is equal to the number of states in the minimal DFA.
  - Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .
- Intuitively, *L*\* algorithm aims at finding the suffixes(cols) *w* to **distinguish** the prefixes(rows) *u*, *v*. Each prefix can reach a state in the underlying minimal DFA.





- Closed : For every row from  $U\Sigma$ , there is a equal row in U. If not, move the prefix to U.
- Consistent : For every two rows *u*, *v* from *U*, if their rows are equal, then the rows of *u*σ and *v*σ are equal. If not, extend *V*.
- Counterexample process : add all prefixes of a counterexample to U.

- More recent work extends *L*\* to different models
  - e.g., Mealy machines [9], I/O automata [1], register automata [5], NFA [2], Büchi automata [6], symbolic automata [7, 3] and MDP [10], etc..
- Motivation
  - How to actively learn a timed model for a real-time system?
- Related work
  - Active learning of event-recording automata [4].
  - Passive identification of deterministic one-clock timed automata in the limit via fitting a labelled sample  $S = (S_+, S_-)$  [12].
  - Passive learning of timed automata via Genetic Programming and testing [11].

### 1 Model learning and L\* algorithm

### 2 Active Learning of DOTAs [TACAS20]

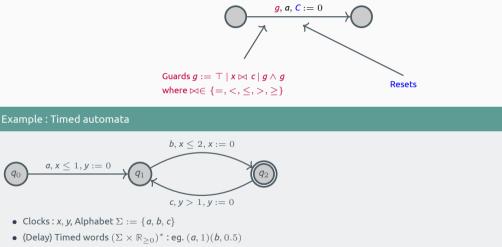
- Learning from a smart teacher
- Learning from a normal teacher

3 Active learning of DOTAs using Constraint solving [ATVA22]

### 4 Conclusion and future work

## Timed automata

 As opposed to finite automata, timed automata are equipped with clocks and add guards and can reset clocks on transitions



- Fundamental obstacle : Do not have a Myhill-Nerode-like theorem for (regular) timed languages...
- Tech. challenges (continuous-time, black-box)
  - Determining how many clocks.
  - Infinite states (pair of a location and a clock valuation).
  - Determining timing constraints on transitions.
  - Determining clock resets on transitions.
  - (Related to the previews points) Mapping observable delay timed behaviours from outside to internal logical clock valuations.
- Active learning of deterministic timed automata with a single clock (DOTAs).
- Solution of learning DOTAs [TACAS 20]
  - © A connection between learning from delay timed words (outside) and learning from logical timed words (inside).
  - © Utilize a partition function to map *logical-timed* valuations to finite intervals.
  - © First consider a smart teacher who can tell the learner reset information. Then drop the assumption (i.e. reduction to a normal teacher) by guessing the resets.

- The DOTA  ${\mathcal A}$  recognizes the target language  ${\mathcal L}.$
- $\Sigma = \{a, b\}$ ;  $\mathcal{B} = \{\top, \bot\}$  where  $\top$  is for reset,  $\bot$  otherwise.

### An example of DOTA



- The DOTA  ${\mathcal A}$  recognizes the target language  ${\mathcal L}.$
- $\Sigma = \{a, b\}$ ;  $B = \{\top, \bot\}$  where  $\top$  is for reset,  $\bot$  otherwise.
- Timed words  $(\Sigma \times \mathbb{R}_{\geq 0})^*$ : outside observations; e.g.  $\omega = (b, 1)(a, 1.1)(b, 1)$  is an accepting timed words.
- Reset-logical timed words  $(\Sigma \times \mathbb{R}_{\geq 0} \times \mathcal{B})^*$  : inside logical actions;

e.g.  $\gamma_r=(b,1,\top)(a,1.1,\bot)(b,2.1,\top)$  is the reset-logical counterpart of  $\omega.$ 

Logical counterpart  $\gamma = (b, 1)(a, 1.1)(b, 2.1)$ .





• Given a DOTA A,  $L_{t}(A)$  represents the recognized reset-logical timed language of A;  $\mathcal{L}(A)$  represents the (delay) timed language.

#### Theorem

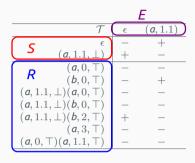
Given two DOTAs  $\mathcal{A}$  and  $\mathcal{H}$ , if  $L_r(\mathcal{A}) = L_r(\mathcal{H})$ , then  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{H})$ .

- Given a DOTA A,  $L_{t}(A)$  represents the recognized reset-logical timed language of A;  $\mathcal{L}(A)$  represents the (delay) timed language.
- Guiding principle : learning the timed language of a DOTA  $\mathcal A$  can be reduced to learning the reset-logical timed language of  $\mathcal A$
- Smart teacher setting
  - Membership queries are logical timed words, teacher responds with reset information.
  - For equivalence queries, instead of checking directly whether  $L_r(\mathcal{H}) = L_r(\mathcal{A})$ , the contraposition of the theorem guarantees to perform equivalence queries over their timed counterparts (checking  $\mathcal{L}(\mathcal{H}) = \mathcal{L}(\mathcal{A})$ ).

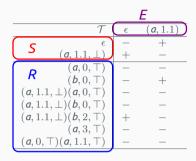
#### Theorem

Given two DOTAs  $\mathcal{A}$  and  $\mathcal{H}$ , if  $L_r(\mathcal{A}) = L_r(\mathcal{H})$ , then  $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{H})$ .

| $\mathcal{T}$                | $\epsilon$ | ( <i>a</i> , 1.1) |
|------------------------------|------------|-------------------|
| $\epsilon$                   | -          | +                 |
| $(a, 1.1, \perp)$            | +          | —                 |
| $(a, 0, \top)$               | —          | -                 |
| $(b, 0, \top)$               | —          | +                 |
| $(a, 1.1, \bot)(a, 0, \top)$ | —          | -                 |
| $(a, 1.1, \bot)(b, 0, \top)$ | —          | —                 |
| $(a, 1.1, \bot)(b, 2, \top)$ | +          | _                 |
| $(a, 3, \top)$               | —          | _                 |
| $(a,0,\top)(a,1.1,\top)$     | —          | —                 |



- Observation table  $\mathcal{T} = (\Sigma, S, R, E, f)$ 
  - The prefixes set **S** indicates the different locations
  - The extended prefixes *R* indicates the transitions
  - The suffixes set *E* distinguishes the locations.
  - The mapping  $f(\omega \cdot e) = +$  iff  $MQ(\omega \cdot e) = +$  for  $\forall \omega \in S \cup R, e \in E$
- Function val: (S ∪ R) → (E → {+, -}) helps to label the locations, e.g., q<sub>-+</sub>, q<sub>+-</sub>, q<sub>--</sub>.



- Observation table  $\mathcal{T} = (\Sigma, S, R, E, f)$ 
  - The prefixes set <mark>S</mark> indicates the different locations
  - The extended prefixes *R* indicates the transitions
  - The suffixes set *E* distinguishes the locations.
  - The mapping  $f(\omega \cdot e) = + \text{ iff } MQ(\omega \cdot e) = + \text{ for } \forall \omega \in S \cup R, e \in E$
- Function val: (S ∪ R) → (E → {+, -}) helps to label the locations, e.g., q<sub>-+</sub>, q<sub>+-</sub>, q<sub>--</sub>.

- Table conditions :
  - Reduced :  $\forall s, s' \in S : s \neq s'$  implies  $val(s) \neq val(s')$ ;
  - closed:  $\forall r \in R, \exists s \in S : val(s) = val(r);$
  - Consistent :

 $\begin{array}{l} \forall \gamma_r, \gamma_r' \in \mathcal{S} \cup \mathcal{R}, val(\gamma_r) = val(\gamma_r') \text{ implies } val(\gamma_r \cdot \sigma_r) = val(\gamma_r' \cdot \sigma_r') \text{, for all } \sigma_r, \sigma_r' \in \Sigma_r \text{ satisfying } \gamma_r \cdot \sigma_r, \gamma_r' \cdot \sigma_r' \in \mathcal{S} \cup \mathcal{R} \text{ and } \Pi_{\{1,2\}} \sigma_r = \Pi_{\{1,2\}} \sigma_r' \end{array}$ 

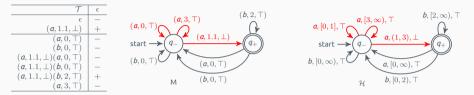


Figure 1 – The prepared timed observation table  $\mathcal{T}$ , the corresponding DFA M and hypothesis  $\mathcal{H}$ .

• Partition function maps a list of clock valuations  $\ell = \tau_0, \tau_1, \cdots, \tau_n$  with  $\lfloor \tau_i \rfloor \neq \lfloor \tau_j \rfloor$  to  $\{I_0, I_1, \ldots, I_n\}$  with  $\bigcup I_i = \mathbb{R}_{\geq 0}$ ,

$$I_{i} = \begin{cases} [\tau_{i}, \tau_{i+1}), & \text{if } \tau_{i} \in \mathbb{N} \land \tau_{i+1} \in \mathbb{N}; \\ (\lfloor \tau_{i} \rfloor, \tau_{i+1}), & \text{if } \tau_{i} \in \mathbb{R}_{\geq 0} \setminus \mathbb{N} \land \tau_{i+1} \in \mathbb{N}; \\ [\tau_{i}, \lfloor \tau_{i+1} \rfloor], & \text{if } \tau_{i} \in \mathbb{N} \land \tau_{i+1} \in \mathbb{R}_{\geq 0} \setminus \mathbb{N}; \\ (\lfloor \tau_{i} \rfloor, \lfloor \tau_{i+1} \rfloor], & \text{if } \tau_{i} \in \mathbb{R}_{\geq 0} \setminus \mathbb{N} \land \tau_{i+1} \in \mathbb{R}_{\geq 0} \setminus \mathbb{N}. \end{cases}$$

• e.g.,  $\ell_{q_-,a} = \{0, 1.1, 3\}$  and then get the intervals [0, 1], (1, 3) and  $[3, \infty)$ .

• Given a target timed language  $\mathcal{L}$  which is recognized by a DOTA  $\mathcal{A}$ , let n = |Q| be the number of locations of  $\mathcal{A}$ ,  $m = |\Sigma|$  the size of the alphabet, and  $\kappa$  the maximal constant appearing in the clock constraints of  $\mathcal{A}$ , and h be the length of the longest counterexample returned by the teacher.

#### Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes the target timed language  $\mathcal{L}$ .

#### Theorem

The complexity is  $\mathcal{O}(hmn^2\kappa^3)$ .

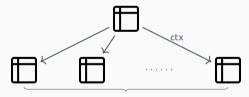
## Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and **no longer returns reset** information in answers to membership and equivalence queries.
- The learner guesses the resets in order to convert between delay and logical timed words.

## Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and **no longer returns reset** information in answers to membership and equivalence queries.
- The learner guesses the resets in order to convert between delay and logical timed words.
- Basic process
  - At every round, guess all needed resets and put all resulting table candidates into a set ToExplore;
  - Take out one table instance from the set *ToExplore*;
  - The operations on the table are same to those in the situation with a smart teacher.





Normal teacher situation

Guessing every reset in the ctx.

#### Smart teacher situation

- Termination and complexity
  - At every iteration, the learner selects the table instance which requires the least number of guesses.
  - The learner keeps the correct table instance of each iteration in *ToExplore* since he guesses all reset information.
  - If  $\mathbf{T} = (\Sigma, S, R, E, f)$  is the final observation table for the correct candidate in the situation with a smart teacher, the learner can find it after checking  $\mathcal{O}(2^{(|S|+|R|)\times(1+\sum_{e_i\in E\setminus\{e\}}(|e_i|-1))})$  table instances in the worst situation with a normal teacher.
  - The process also may terminate and return a DOTA which is different to the one in the smart teacher situation.

#### Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes the target timed language  $\mathcal{L}.$ 

| Case ID | $ \Delta _{mean}$ . | #Membership      |                   |                  | #Equivalence     |                   |                  | n <sub>mean</sub> | t <sub>mean</sub> |
|---------|---------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|-------------------|
|         | i incon             | N <sub>min</sub> | N <sub>mean</sub> | N <sub>max</sub> | N <sub>min</sub> | N <sub>mean</sub> | N <sub>max</sub> | mean              | mean              |
| 4_4_20  | 16.3                | 118              | 245.0             | 650              | 20               | 30.1              | 42               | 4.5               | 24.7              |
| 7_2_10  | 16.9                | 568              | 920.8             | 1393             | 23               | 31.3              | 37               | 9.1               | 14.6              |
| 7_4_10  | 25.7                | 348              | 921.7             | 1296             | 34               | 50.9              | 64               | 9.3               | 38.0              |
| 7_6_10  | 26.0                | 351              | 634.5             | 1050             | 35               | 44.7              | 70               | 7.8               | 49.6              |
| 7 4 20  | 34.3                | 411              | 1183.4            | 1890             | 52               | 70.5              | 93               | 9.5               | 101.7             |
| 10_4_20 | 39.1                | 920              | 1580.9            | 2160             | 61               | 73.1              | 88               | 11.7              | 186.7             |
| 12 4 20 | 47.6                | 1090             | 2731.6            | 5733             | 66               | 97.4              | 125              | 16.0              | 521.8             |
| 14_4_20 | 58.4                | 1390             | 2238.6            | 4430             | 79               | 107.7             | 135              | 16.0              | 515.5             |

Table 1 – Experimental results on random examples for the smart teacher situation.

Case ID :  $n_{-}m_{-}\kappa$ , consisting of the number of locations, the size of the alphabet and the maximum constant appearing in the clock constraints, respectively, of the corresponding group of A's.

 $|\Delta|_{\mathsf{mean}}$  : the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conducted membership and equivalence queries, respectively. N<sub>min</sub> : the minimal, N<sub>mean</sub> : the mean, N<sub>max</sub> : the maximum.

*n*<sub>mean</sub> : the average number of locations of the learned automata in the corresponding group.

 $t_{mean}$  : the average wall-clock time in seconds, including that taken by the learner and by the teacher.

## Experiment 2

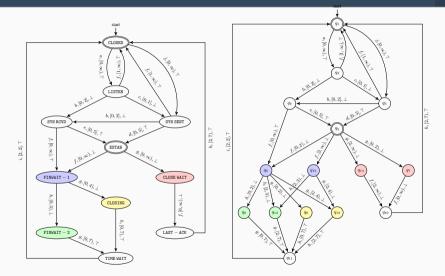


Figure 2 – Left : The functional specification of the TCP protocol with more complex timing constraints. Right : The learned functional specification of the TCP protocol. Colors indicate the splitting of locations.

| Case ID | $ \Delta _{mean}$ | #Membership      |                   |                  | #Equivalence     |                   |                  | n <sub>mean</sub> | <i>t</i> mean | #T <sub>explored</sub> | #Learnt |
|---------|-------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|---------------|------------------------|---------|
|         | i incun           | N <sub>min</sub> | N <sub>mean</sub> | N <sub>max</sub> | N <sub>min</sub> | N <sub>mean</sub> | N <sub>max</sub> | mean              | mean          | explored               |         |
| 3 2 10  | 4.8               | 43               | 83.7              | 167              | 5                | 8.8               | 14               | 3.0               | 0.9           | 149.1                  | 10/10   |
| 4_2_10  | 6.8               | 67               | 134.0             | 345              | 6                | 13.3              | 24               | 4.0               | 7.4           | 563.0                  | 10/10   |
| 5_2_10  | 8.8               | 75               | 223.9             | 375              | 9                | 15.2              | 24               | 5.0               | 35.5          | 2811.6                 | 10/10   |
| 6 2 10  | 11.9              | 73               | 348.3             | 708              | 10               | 16.7              | 30               | 5.6               | 59.8          | 5077.6                 | 7/10    |
| 4_4_20  | 16.3              | 231              | 371.0             | 564              | 27               | 30.9              | 40               | 4.0               | 137.5         | 8590.0                 | 6/10    |

Table 2 – Experimental results on random examples for the normal teacher situation.

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the cached methods, respectively. *N*<sub>min</sub> : the minimal, *N*<sub>mean</sub> : the mean, *N*<sub>max</sub> : the maximum.

 $\#T_{explored}$ : the average number of the explored table instances.

#Learnt : the number of the learnt DOTAs in the group (learnt/total).

- Give an active learning algorithm with a smart teacher for DOTAs. It is an efficient (polynomial) algorithm. (white-box or gray-box)
- Give an active learning algorithm with a normal teacher for DOTAs. It has an exponential complexity increase. (black-box)
- DOTAs can be actively learned.

## Model learning and L\* algorithm

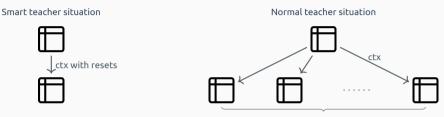
## Active Learning of DOTAs [TACAS20

### **3** Active learning of DOTAs using Constraint solving [ATVA22]

Learning DOTAs using constraint solving

### 4 Conclusion and future work

Brute-force guessing leads to exponential number of table instances, which limits the scalability of the algorithm in practical applications.



Guessing every reset in the ctx.

- ③ Basic ideas : maintain a single observation table that collects all results from previous membership queries, rather than one observation table for each possible choice of resets.
  - 1 Associate each row with a boolean variable representing reset information after running the timed word.
  - 2 Encode the table conditions into the SMT formulas with the variables.
  - 3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.

- Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .
- One key step of L\*-style framework : determine if two words ω<sub>1</sub> and ω<sub>2</sub> end in different locations using some suffixes.

mm

- Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .
- One key step of L\*-style framework : determine if two words ω<sub>1</sub> and ω<sub>2</sub> end in different locations using some suffixes.
  - © If *u* and *v* reach the same location, then *uw* and *vw* should reach some same location.

 $\xrightarrow{W}$  Same +/-

 $\sim \stackrel{W}{\longrightarrow} - : vw \not\in L$ 

~

- Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .
- One key step of L\*-style framework : determine if two words ω<sub>1</sub> and ω<sub>2</sub> end in different locations using some suffixes.
  - © If *u* and *v* reach the same location, then *uw* and *vw* should reach some same location.

equal How to compare two timed words  $\omega_1$  and  $\omega_2$  using some suffixes e?

- Right congruence relation  $\sim_L$ : For  $u, v \in \Sigma^*$ ,  $u \sim_L v$  iff  $\forall w \in \Sigma^*$ ,  $uw \in L \iff vw \in L$ .
- One key step of L\*-style framework : determine if two words ω<sub>1</sub> and ω<sub>2</sub> end in different locations using some suffixes.
  - © If *u* and *v* reach the same location, then *uw* and *vw* should reach some same location.

 $\rightarrow$  Same  $\pm / -$ 

$$-----+ u w \in L$$

 $\blacksquare$  How to compare two timed words  $\omega_1$  and  $\omega_2$  using some suffixes e?

• Even if  $\omega_1$  and  $\omega_2$  reach the same location,  $\omega_1 e$  and  $\omega_2 e$  may reach two different locations.

$$(q_0) \xrightarrow{a, [2, 5], \bot} (q_1) \xrightarrow{b, [A, \infty], T} (q_2)$$

• For example,  $\omega_1 = (a, 2)$  and  $\omega_2 = (a, 3)$ , e = (b, 1)

- Two timed words reach the same location, however may reach different locations after appending the same suffix. (Belong to different regions)
  - © Alignment and comparison : a method to determine whether two timed words are distinguished using membership queries with unknown reset information.
  - ③ A method to encode table conditions into the SMT formulas using the variables.
- Basic ideas : maintain a single observation table that collects all results from previous membership queries, rather than one observation table for each possible choice of resets.
  - 1 Associate each row with a boolean variable representing reset information after running the timed word.
  - 2 Encode the table conditions into the SMT formulas with the variables.
  - 3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.

|            | (2)             |                |                 |        |                 |               |         |          |        |          |
|------------|-----------------|----------------|-----------------|--------|-----------------|---------------|---------|----------|--------|----------|
|            | 0               |                | $\epsilon$      | (a, 0) | (a, 4) (a, 5.5) | (a, 0) (a, 0) | (a, 4)  | (a, 9.5) |        | <u> </u> |
| S          | $\epsilon$      | b <sub>0</sub> | T               | 1      | ¬b5             | 1             | b3      | $\perp$  |        |          |
|            | ( <b>a</b> , 0) | $\mathbb{b}_1$ | ⊥               | Т      | 1               | T             | 1       | Т        | C      |          |
| <b>S</b> + | (a, 4) (a, 5.5) | $\mathbb{b}_5$ | ¬b <sub>5</sub> | 1      | Т               | 1             | 1       | $\perp$  | (a, 5. | 5)       |
|            | (a,0)(a,0)      | $\mathbb{b}_2$ | 1 1             | T      | 1               | T             | 1       | Т        |        |          |
| R          | (a, 4)          | $\mathbb{D}_3$ | b3              | 1      | 1               | 1             | T       | 1        |        |          |
|            | (a, 9.5)        | $\mathbb{b}_4$ | ⊥               | Т      | $\perp$         | Т             | $\perp$ | Т        |        |          |

## $\odot \mathcal{O} = \{\Sigma, S, S_+, R, E, f, N\}$

- S contains timed words that are certainly distinct from each other;
- S<sub>+</sub> : additional rows in the observation table that are distinct from rows in S under some choices of resets.
- R collects all current membership queries under all different choice of resets.
- f summarizes when two corresponding timed words are distinguished, using formulas in terms of ending reset variables b.
- N is the current limit on the number of locations in the candidate automaton.
- Reset variables b<sub>i</sub> denotes whether clock resets after running ω<sub>i</sub>.
- (Innovation) Cells record all membership queries by comparing each pair of timed words in *S* ∪ *S*<sub>+</sub> ∪ *R* under all valid combinations of last resets.

Example : Given suffix e = (a, 5.5), we have

$$f((a,4),\epsilon,0,0) = \bot, f((a,4),\epsilon,1,0) = \top$$

this can be summarized as  $\mathbb{b}_3$ .

## **Experiment 4**

| <i>t</i> ( <i>s</i> ) | #Learnt       | $ Q_{\mathcal{H}} $ | #Equivalence     |                   | 1                | p                | #Membershij       | 1                | Method _    | $ \Delta $ | Group             |
|-----------------------|---------------|---------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------|------------|-------------------|
|                       |               | 1 M                 | N <sub>max</sub> | N <sub>mean</sub> | N <sub>min</sub> | N <sub>max</sub> | N <sub>mean</sub> | N <sub>min</sub> |             | 1-1        |                   |
| 39.88<br>0.78         | 7/10<br>10/10 | 5.6<br>5.6          | 30<br>35         | 16.7<br>20.8      | 10<br>11         | 708<br>3929      | 348.3<br>1894.8   | 73<br>104        | DOTAL<br>SL | 11.9       | 6_2_10            |
| 100.223<br>1.42       | 6/10<br>10/10 | 4.0<br>4.0          | 40<br>42         | 30.8<br>32.8      | 27<br>24         | 564<br>5329      | 317.0<br>3497.7   | 231<br>1740      | DOTAL<br>SL | 16.3       | 4_4_20            |
| TO<br>2.90            | 0/10<br>10/10 | 7.0                 | 69               | 51.5              | - 44             | 15216            | 9393.3            | 6092             | DOTAL<br>SL | 26.0       | 7_4_20            |
| TO<br>5.89            | 0/10<br>10/10 | 10.0                | 93               | 76.5              | —<br>59          | 23726            | 16322.3           | 8579             | DOTAL<br>SL | 39.1       | 10_4_20           |
| TO<br>10.052          | 0/10<br>10/10 | 12.0                | 102              | 88.0              | - 70             | 29011            | 20345.5           | 13780            | DOTAL<br>SL | 47.6       | 12_4_20           |
| TO<br>14.692          | 0/10<br>10/10 | 14.0                | 126              | 110.6             | —<br>92          | 40693            | 28569.0           | 18915            | DOTAL<br>SL | 58.4       | 14_4_20           |
| TO<br>7.19            | 0/1<br>1/1    | 12                  | 49               | 49.0              | —<br>49          | 3453             | 3453.0            | 3453             | DOTAL<br>SL | 40         | AKM<br>(17_12_5)  |
| TO<br>19.04           | 0/1<br>1/1    | 20                  | 32               | 32.0              |                  | 4713             | 4713.0            | 4713             | DOTAL<br>SL | 22         | TCP<br>(22_13_2)  |
| TO<br>126.30          | 0/1<br>1/1    | 14                  | 18               | 18.0              | —<br>18          | 4769             | 4769.0            | 4769             | DOTAL<br>SL | 23         | CAS<br>(14_10_27) |
| TC<br>109.01          | 0/1<br>1/1    | 25                  | 28               | 28.0              | - 28             | 10854            | 10854.0           | 10854            | DOTAL<br>SL | 42         | PC<br>(26_17_10)  |

#### Table 3 – Experimental results on learning DOTAs using constraint solving.

### Model learning and L\* algorithm

### 2 Active Learning of DOTAs [TACAS20]

### 3 Active learning of DOTAs using Constraint solving [ATVA22]

### **4** Conclusion and future work

## Conclusion

- Current results
  - Learning DOTAs from a smart teacher (gray-box or white-box, efficient) and from a normal teacher<sup>1</sup> (black-box, inefficient);
  - Learning DOTAs using constraint solving<sup>2</sup> (black-box, scalable);
  - Extending in the PAC learning scheme when the exact equivalence oracle is not available <sup>3</sup>;
  - Adapting to learning real-time automata <sup>4</sup>.
- Ongoing work
  - Active learning of multi-clocks timed automata avoiding just mimicking region graphs.
    - Which kind of Myhill-Nerode Theorem for deterministic timed automata we can have. [8]
    - How compact the congruence relation can be.
  - Passive learning from observations.
    - Robust learning.
    - Multi-objects learning from demonstrations. (Involving heuristic methods)

- 1. Jie An, Mingshuai Chen, Bohua Zhan, et al.. Learning One-Clock Timed Automata. TACAS'20.
- 2. Runging Xu, Jie An\*, Bohua Zhan. Active Learning of One-Clock Timed Automata using Constraint Solving. ATVA'22.
- 3. Wei Shen, Jie An\*, et al. PAC Learning of Deterministic One-Clock Timed Automata. ICFEM'20
- 4. Jie An, Bohua Zhan, et al.. Learning nondeterministic real-time automata. IEEE-TECS (EMSOFT'21).

## **Reference I**

- [1] F. Aarts and F. W. Vaandrager. Learning I/O automata. In CONCUR'10, pages 71–85, 2010.
- [2] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of NFA. In IJCAI'09, pages 1004–1009, 2009.
- [3] S. Drews and L. D'Antoni. Learning symbolic automata. In *TACAS'17*, pages 173–189, 2017.
- [4] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata. Theor. Comput. Sci., 411(47):4029–4054, 2010.
- [5] F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata. In VMCAI'12, pages 251–266, 2012.
- [6] Y. Li, Y. Chen, L. Zhang, and D. Liu. A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. In TACAS'17, pages 208–226, 2017.

## **Reference II**

- [7] O. Maler and I. Mens. Learning regular languages over large alphabets. In TACAS'14, pages 485–499, 2014.
- O. Maler and A. Pnueli.
   On recognizable timed languages. In FOSSACS 2004, pages 348–362, 2004.
- [9] M. Shahbaz and R. Groz. *Inferring Mealy machines.* In *FM'09*, pages 207–222, 2009.
- [10] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen. L\*-based learning of Markov decision processes. In FM'19, pages 651–669, 2019.
- [11] M. Tappler, B. K. Aichernig, K. G. Larsen, and F. Lorber. Time to learn - learning timed automata from tests. In FORMATS'19, pages 216–235, 2019.
- [12] S. Verwer, M. de Weerdt, and C. Witteveen. The efficiency of identifying timed automata and the power of clocks. Inf. Comput., 209(3):606–625, 2011.