
Active learning of One-Clock Timed Automata

Jie An

Joint work with Mingshuai Chen, Runqing Xu, Bohua Zhan, et al.

CyPhAI Workshop @ NII, Tokyo, Nov. 15, 2022

Outline

1 Model learning and L∗ algorithm

2 Active Learning of DOTAs [TACAS20]

Learning from a smart teacher
Learning from a normal teacher

3 Active learning of DOTAs using Constraint solving [ATVA22]

Learning DOTAs using constraint solving

4 Conclusion and future work

© Jie An CyPhAI Workshop @ NII 2 / 33

Outline

1 Model learning and L∗ algorithm

2 Active Learning of DOTAs [TACAS20]

3 Active learning of DOTAs using Constraint solving [ATVA22]

4 Conclusion and future work

© Jie An CyPhAI Workshop @ NII 3 / 33

Model/Automata learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y

f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automata learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language

L ⊆ Σ∗

The model is a kind of

Automaton

© Jie An CyPhAI Workshop @ NII 4 / 33

Model/Automata learning

• Machine learning

a sample set

M = {(x, y)|x ∈ X, y ∈ Y}
learn

Model

f : X → Y

f(x) = y, ∀x ∈ X

predict or identify f(x)

for all x ∈ X

• Model/Automata learning

Σ is an alphabet

X = Σ∗ set of words

Y = {+,−} or other set of labels

learn

Model

f is a language

L ⊆ Σ∗

The model is a kind of

Automaton

© Jie An CyPhAI Workshop @ NII 4 / 33

Model/Automata learningIntroduction Preliminaries Large Alphabets Learning Symbolic Automata Counter-examples Booleans Experimental Results Conclusion

ModelBlack Box
Learning

System
Identification

Language
Identification

Inductive Inference

1 / 31

© The figure comes from Irini-Eleftheria Mens.

© Jie An CyPhAI Workshop @ NII 5 / 33

A prehistory and history

1956 Edward Moore. Gedanken-experiments on sequential machines.
• Defines the problem as a black boxmodel inference.

1972 E. Mark Gold. System identification via state characterization.
• Learning finite automata is possible in finite time. First use the basic idea on table-based methods.

1987 Dana Angluin. Learning regular sets from queries and counter-examples.
• The L∗ active learning algorithm withmembership and equivalence queries. Polynomial in the automaton size.

1993 Ronald Rivest and Robert Schapire. Inference of finite automata using homing sequences.
• An improved version of L∗ by using the breakpoint method to treat counterexamples.

2014 Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm : a redundancy-free approach to active
automata learning.

• A redundancy-free organization of observations based on Discrimination Trees.

......

© Jie An CyPhAI Workshop @ NII 6 / 33

Minimally adequate teacher (MAT)

• Dana Angluin proposed an online, active, and exact learning framework L∗ for Deterministic Finite Automata
(DFA) in 1987.

• Two kinds of queries : membership query and equivalence query.

• Table conditions : closed and consistent.

Learner Teacher
u ∈ L?

yes(+) or no(−)

observation

table

Membership

oracle

hypothesis A

L(A) = L?

no with u′ ∈ L(A)⊕ L

yes

Output A

Equivalence

oracle

© Jie An CyPhAI Workshop @ NII 7 / 33

Myhill-Nerode theorem

• The Myhill-Nerode theorem : a language L is regular iff∼L has a finite number of equivalence classes, and
moreover, that this number is equal to the number of states in the minimal DFA.

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.

• Intuitively, L∗ algorithm aims at finding the suffixes(cols)w to distinguish the prefixes(rows) u, v. Each prefix
can reach a state in the underlying minimal DFA.

start

b

a

a

b

b

a

• ϵ ∼L b ∼L aa,
ab ∼L aba,
a ∼L abb

ϵ b
ϵ − −

ab + −
a − +

b − −
aba + −
abb − +
aa − −

• Closed : For every row from UΣ, there is a equal row in U. If not, move the prefix to U.

• Consistent : For every two rows u, v from U, if their rows are equal, then the rows of uσ and vσ are equal. If not,
extend V.

• Counterexample process : add all prefixes of a counterexample to U.

© Jie An CyPhAI Workshop @ NII 8 / 33

Myhill-Nerode theorem

• The Myhill-Nerode theorem : a language L is regular iff∼L has a finite number of equivalence classes, and
moreover, that this number is equal to the number of states in the minimal DFA.

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.

• Intuitively, L∗ algorithm aims at finding the suffixes(cols)w to distinguish the prefixes(rows) u, v. Each prefix
can reach a state in the underlying minimal DFA.

start

b

a

a

b

b

a

• ϵ ∼L b ∼L aa,
ab ∼L aba,
a ∼L abb

ϵ b
ϵ − −

ab + −
a − +

b − −
aba + −
abb − +
aa − −

• Closed : For every row from UΣ, there is a equal row in U. If not, move the prefix to U.

• Consistent : For every two rows u, v from U, if their rows are equal, then the rows of uσ and vσ are equal. If not,
extend V.

• Counterexample process : add all prefixes of a counterexample to U.

© Jie An CyPhAI Workshop @ NII 8 / 33

Motivation

• More recent work extends L∗ to different models, e.g., Mealy machines [9], I/O automata [1], register automata [5], NFA [2], Büchi automata [6], symbolic automata [7, 3]
and MDP [10], etc..

• Motivation
• How to actively learn a timed model for a real-time system?

• Related work
• Active learning of event-recording automata [4].
• Passive identification of deterministic one-clock timed automata in the limit via fitting a labelled sample

S = (S+, S−) [12].
• Passive learning of timed automata via Genetic Programming and testing [11].

© Jie An CyPhAI Workshop @ NII 9 / 33

Outline

1 Model learning and L∗ algorithm

2 Active Learning of DOTAs [TACAS20]

Learning from a smart teacher
Learning from a normal teacher

3 Active learning of DOTAs using Constraint solving [ATVA22]

4 Conclusion and future work

© Jie An CyPhAI Workshop @ NII 10 / 33

Timed automata

• As opposed to finite automata, timed automata are equipped with clocks and add guards and can reset clocks
on transitions

g, a, C := 0

Guards g := ⊤ | x ▷◁ c | g ∧ g

where ▷◁∈ {=, <,≤, >,≥}
Resets

Example : Timed automata

q0 q1 q2
a, x ≤ 1, y := 0

b, x ≤ 2, x := 0

c, y > 1, y := 0

• Clocks : x, y, AlphabetΣ := {a, b, c}

• (Delay) Timed words (Σ × R≥0)
∗ : eg. (a, 1)(b, 0.5)

© Jie An CyPhAI Workshop @ NII 11 / 33

Challenges on active learning of timed automata

• Fundamental obstacle : Do not have a Myhill-Nerode-like theorem for (regular) timed languages...
• Tech. challenges (continuous-time, black-box)

K Determining howmany clocks.
K Infinite states (pair of a location and a clock valuation).
K Determining timing constraints on transitions.
K Determining clock resets on transitions.
K (Related to the previews points) Mapping observable delay timed behaviours from outside to internal logical clock

valuations.

• Active learning of deterministic timed automata with a single clock (DOTAs).
• Solution of learning DOTAs [TACAS 20], A connection between learning from delay timed words (outside) and learning from logical timed words (inside)., Utilize a partition function to map logical-timed valuations to finite intervals., First consider a smart teacher who can tell the learner reset information. Then drop the assumption (i.e. reduction to a

normal teacher) by guessing the resets.

© Jie An CyPhAI Workshop @ NII 12 / 33

Deterministic One-clock timed automata

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.

• Timed words (Σ× R≥0)
∗ : outside observations ;

e.g. ω = (b, 1)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical
actions ;
e.g. γr = (b, 1,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical
counterpart of ω.
Logical counterpart γ = (b, 1)(a, 1.1)(b, 2.1).

An example of DOTA

q0start q1
a, (1, 3),⊥

b, [0,∞),⊤ b, [2, 4),⊤

A

© Jie An CyPhAI Workshop @ NII 13 / 33

Deterministic One-clock timed automata

• The DOTAA recognizes the target language L.
• Σ = {a, b} ; B = {⊤,⊥}where⊤ is for reset,⊥ otherwise.

• Timed words (Σ× R≥0)
∗ : outside observations ;

e.g. ω = (b, 1)(a, 1.1)(b, 1) is an accepting timed words.

• Reset-logical timed words (Σ× R≥0 × B)∗ : inside logical
actions ;
e.g. γr = (b, 1,⊤)(a, 1.1,⊥)(b, 2.1,⊤) is the reset-logical
counterpart of ω.
Logical counterpart γ = (b, 1)(a, 1.1)(b, 2.1).

An example of DOTA

q0start q1
a, (1, 3),⊥

b, [0,∞),⊤ b, [2, 4),⊤

A

© Jie An CyPhAI Workshop @ NII 13 / 33

Learning from a smart teacher

• Given a DOTAA, Lr(A) represents the recognized reset-logical timed language ofA ;
L(A) represents the (delay) timed language.

• Guiding principle : learning the timed language of a DOTAA can be reduced to learning the reset-logical timed
language ofA

• Smart teacher setting
• Membership queries are logical timed words, teacher responds with reset information.
• For equivalence queries, instead of checking directly whether Lr(H) = Lr(A), the contraposition of the theorem

guarantees to perform equivalence queries over their timed counterparts (checkingL(H) = L(A)).

Theorem

Given two DOTAsA andH, if Lr(A) = Lr(H), thenL(A) = L(H).

© Jie An CyPhAI Workshop @ NII 14 / 33

Learning from a smart teacher

• Given a DOTAA, Lr(A) represents the recognized reset-logical timed language ofA ;
L(A) represents the (delay) timed language.

• Guiding principle : learning the timed language of a DOTAA can be reduced to learning the reset-logical timed
language ofA

• Smart teacher setting
• Membership queries are logical timed words, teacher responds with reset information.
• For equivalence queries, instead of checking directly whether Lr(H) = Lr(A), the contraposition of the theorem

guarantees to perform equivalence queries over their timed counterparts (checkingL(H) = L(A)).

Theorem

Given two DOTAsA andH, if Lr(A) = Lr(H), thenL(A) = L(H).

© Jie An CyPhAI Workshop @ NII 14 / 33

Learning from a smart teacher

T ϵ (a, 1.1)
ϵ − +

(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

S

R

E

• Observation table T = (Σ, S,R, E, f)
• The prefixes set S indicates the different locations
• The extended prefixes R indicates the transitions
• The suffixes set E distinguishes the locations.
• The mapping f(ω · e) = + iffMQ(ω · e) = + for

∀ω ∈ S ∪ R, e ∈ E

• Function val : (S ∪ R) → (E → {+,−}) helps to label the
locations, e.g., q−+, q+−, q−−.

• Table conditions :
• Reduced : ∀s, s′ ∈ S : s ̸= s′ implies val(s) ̸= val(s′) ;
• closed : ∀r ∈ R, ∃s ∈ S : val(s) = val(r) ;
• Consistent :

∀γr, γr
′ ∈ S ∪ R, val(γr) = val(γr

′) implies val(γr · σr) = val(γr
′ · σr

′), for all σr, σr
′ ∈ Σr satisfying

γr · σr, γr
′ · σr

′ ∈ S ∪ R andΠ{1,2}σr = Π{1,2}σr
′

© Jie An CyPhAI Workshop @ NII 15 / 33

Learning from a smart teacher

T ϵ (a, 1.1)
ϵ − +

(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

S

R

E
• Observation table T = (Σ, S,R, E, f)

• The prefixes set S indicates the different locations
• The extended prefixes R indicates the transitions
• The suffixes set E distinguishes the locations.
• The mapping f(ω · e) = + iffMQ(ω · e) = + for

∀ω ∈ S ∪ R, e ∈ E

• Function val : (S ∪ R) → (E → {+,−}) helps to label the
locations, e.g., q−+, q+−, q−−.

• Table conditions :
• Reduced : ∀s, s′ ∈ S : s ̸= s′ implies val(s) ̸= val(s′) ;
• closed : ∀r ∈ R, ∃s ∈ S : val(s) = val(r) ;
• Consistent :

∀γr, γr
′ ∈ S ∪ R, val(γr) = val(γr

′) implies val(γr · σr) = val(γr
′ · σr

′), for all σr, σr
′ ∈ Σr satisfying

γr · σr, γr
′ · σr

′ ∈ S ∪ R andΠ{1,2}σr = Π{1,2}σr
′

© Jie An CyPhAI Workshop @ NII 15 / 33

Learning from a smart teacher

T ϵ (a, 1.1)
ϵ − +

(a, 1.1,⊥) + −
(a, 0,⊤) − −
(b, 0,⊤) − +

(a, 1.1,⊥)(a, 0,⊤) − −
(a, 1.1,⊥)(b, 0,⊤) − −
(a, 1.1,⊥)(b, 2,⊤) + −

(a, 3,⊤) − −
(a, 0,⊤)(a, 1.1,⊤) − −

S

R

E
• Observation table T = (Σ, S,R, E, f)

• The prefixes set S indicates the different locations
• The extended prefixes R indicates the transitions
• The suffixes set E distinguishes the locations.
• The mapping f(ω · e) = + iffMQ(ω · e) = + for

∀ω ∈ S ∪ R, e ∈ E

• Function val : (S ∪ R) → (E → {+,−}) helps to label the
locations, e.g., q−+, q+−, q−−.

• Table conditions :
• Reduced : ∀s, s′ ∈ S : s ̸= s′ implies val(s) ̸= val(s′) ;
• closed : ∀r ∈ R, ∃s ∈ S : val(s) = val(r) ;
• Consistent :

∀γr, γr
′ ∈ S ∪ R, val(γr) = val(γr

′) implies val(γr · σr) = val(γr
′ · σr

′), for all σr, σr
′ ∈ Σr satisfying

γr · σr, γr
′ · σr

′ ∈ S ∪ R andΠ{1,2}σr = Π{1,2}σr
′

© Jie An CyPhAI Workshop @ NII 15 / 33

Learning from a smart teacher

T ϵ
ϵ −

(a, 1.1,⊥) +
(a, 0,⊤) −
(b, 0,⊤) −

(a, 1.1,⊥)(a, 0,⊤) −
(a, 1.1,⊥)(b, 0,⊤) −
(a, 1.1,⊥)(b, 2,⊤) +

(a, 3,⊤) −

q−start q+

(a, 0,⊤)
(a, 3,⊤)

(b, 0,⊤)

(a, 1.1,⊥)

(b, 2,⊤)

(a, 0,⊤)

(b, 0,⊤)M

q−start q+

a, [0, 1],⊤
a, [3,∞),⊤

b, [0,∞),⊤

a, (1, 3),⊥

b, [2,∞),⊤

a, [0,∞),⊤

b, [0, 2),⊤H

Figure 1 – The prepared timed observation table T , the corresponding DFA M and hypothesisH.

• Partition function maps a list of clock valuations ℓ = τ0, τ1, · · · , τn with ⌊τi⌋ ̸= ⌊τj⌋ to {I0, I1, . . . , In}with∪
Ii = R≥0,

Ii =

[τi, τi+1), if τi ∈ N∧ τi+1 ∈ N;

(⌊τi⌋, τi+1), if τi ∈ R≥0 \ N∧ τi+1 ∈ N;

[τi, ⌊τi+1⌋], if τi ∈ N∧ τi+1 ∈ R≥0 \ N;

(⌊τi⌋, ⌊τi+1⌋], if τi ∈ R≥0 \ N∧ τi+1 ∈ R≥0 \ N.

• e.g., ℓq−,a = {0, 1.1, 3} and then get the intervals [0, 1],(1, 3) and [3,∞).

© Jie An CyPhAI Workshop @ NII 16 / 33

Learning from a smart teacher

• Given a target timed language Lwhich is recognized by a DOTAA, let n = |Q| be the number of locations ofA,
m = |Σ| the size of the alphabet, and κ the maximal constant appearing in the clock constraints ofA, and h be
the length of the longest counterexample returned by the teacher.

Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes the target timed languageL.

Theorem

The complexity isO(hmn2κ3).

© Jie An CyPhAI Workshop @ NII 17 / 33

Learning from a normal teacher

• In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset
information in answers to membership and equivalence queries.

• The learner guesses the resets in order to convert between delay and logical timed words.

• Basic process

• At every round, guess all needed resets and put all resulting table candidates into a set ToExplore ;

• Take out one table instance from the set ToExplore ;

• The operations on the table are same to those in the situation with a smart teacher.

Smart teacher situation

ctx with resets

Normal teacher situation

· · · · · ·

ctx

Guessing every reset in the ctx.

© Jie An CyPhAI Workshop @ NII 18 / 33

Learning from a normal teacher

• In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset
information in answers to membership and equivalence queries.

• The learner guesses the resets in order to convert between delay and logical timed words.

• Basic process

• At every round, guess all needed resets and put all resulting table candidates into a set ToExplore ;

• Take out one table instance from the set ToExplore ;

• The operations on the table are same to those in the situation with a smart teacher.

Smart teacher situation

ctx with resets

Normal teacher situation

· · · · · ·

ctx

Guessing every reset in the ctx.

© Jie An CyPhAI Workshop @ NII 18 / 33

Learning from a normal teacher

• Termination and complexity
• At every iteration, the learner selects the table instance which requires the least number of guesses.
• The learner keeps the correct table instance of each iteration in ToExplore since he guesses all reset information.
• If T = (Σ, S, R, E, f) is the final observation table for the correct candidate in the situation with a smart teacher, the

learner can find it after checkingO(2
(|S|+|R|)×(1+

∑
ei∈E\{ϵ} (|ei|−1))

) table instances in the worst situation with a
normal teacher.

• The process also may terminate and return a DOTA which is different to the one in the smart teacher situation.

Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes the target timed languageL.

© Jie An CyPhAI Workshop @ NII 19 / 33

Experiment 1

Table 1 – Experimental results on random examples for the smart teacher situation.

Case ID |∆|mean
#Membership #Equivalence

nmean tmean
Nmin Nmean Nmax Nmin Nmean Nmax

4_4_20 16.3 118 245.0 650 20 30.1 42 4.5 24.7
7_2_10 16.9 568 920.8 1393 23 31.3 37 9.1 14.6
7_4_10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0
7_6_10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6
7_4_20 34.3 411 1183.4 1890 52 70.5 93 9.5 101.7

10_4_20 39.1 920 1580.9 2160 61 73.1 88 11.7 186.7
12_4_20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8
14_4_20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID : n_m_κ, consisting of the number of locations, the size of the alphabet and the maximum constant appearing
in the clock constraints, respectively, of the corresponding group ofA’s.

|∆|mean : the average number of transitions in the corresponding group.

#Membership & #Equivalence : the number of conductedmembership and equivalence queries, respectively.Nmin : the
minimal, Nmean : the mean, Nmax : the maximum.

nmean : the average number of locations of the learned automata in the corresponding group.

tmean : the average wall-clock time in seconds, including that taken by the learner and by the teacher.

© Jie An CyPhAI Workshop @ NII 20 / 33

Experiment 2

CLOSED

start

LISTEN

SYN RCVD SYN SENT

ESTAB

FINWAIT− 1 CLOSE WAIT

CLOSING

FINWAIT− 2 LAST− ACK

TIME WAIT

a
, [0
,∞

),>

f
, [
1
,∞

),
>

b, [
0, 2

],⊥
c, [0, 1],⊥

b, [0, 2],⊥

d, [
0, 5

],>

j, [0,∞
),>

e, [0, 5],>

f
,[0
,∞

),>

f, [
0,∞

),⊥
g, [0,∞),⊥

h
,[0
,3
),⊥

g, [0, 4),⊥

g, [0, 7),>

f
,[
0
,∞

),
⊥

h
,[0
,7
),>

f, [1,∞
),>

h
,[
2
,7
),
>

i,
[2
,2
],
>

q1

start

q2

q4 q3

q5

q6 q15 q7q14

q12q9 q8 q13 q10

q11

a
, [0
,∞

),>

f
, [
1
,∞

),
>

b, [
0,
2],
⊥ c, [0, 1],⊥

b, [0, 2],⊥

d, [
0, 5

],>
e, [0, 5],>

j, [0,∞
),>

f
, [
0,
∞
),
>

f,
[0,

2),
⊥

f,
[2
,∞

),
⊥ g, [0, 2),⊥

g, [2,∞
),⊥

f,
[0
,∞

),
⊥

f, [2,∞
),⊥

h
, [
0,
2)
,⊥

h
, [2
, 3
),⊥

g, [0, 2),⊥

g, [2, 4),⊥

h,
[2
, 3
),
⊥

g, [2, 4),⊥

g, [0, 7),>

g
, [2, 7),> h

, [
0,
7)
,>

h,
[2
, 7
),
>

f, [1,∞
),>

h
,[
2
,7
),
>

i,
[2
,2
],
>

Figure 2 – Left : The functional specification of the TCP protocol with more complex timing constraints. Right : The learned functional specification of
the TCP protocol. Colors indicate the splitting of locations.

© Jie An CyPhAI Workshop @ NII 21 / 33

Experiment 3

Table 2 – Experimental results on random examples for the normal teacher situation.

Case ID |∆|mean
#Membership #Equivalence

nmean tmean #Texplored #Learnt
Nmin Nmean Nmax Nmin Nmean Nmax

3_2_10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10
4_2_10 6.8 67 134.0 345 6 13.3 24 4.0 7.4 563.0 10/10
5_2_10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10
6_2_10 11.9 73 348.3 708 10 16.7 30 5.6 59.8 5077.6 7/10
4_4_20 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence : the number of conducted membership and equivalence queries with the cached methods,
respectively. Nmin : the minimal, Nmean : the mean, Nmax : the maximum.

#Texplored : the average number of the explored table instances.

#Learnt : the number of the learnt DOTAs in the group (learnt/total).

© Jie An CyPhAI Workshop @ NII 22 / 33

Short conclusion

• Give an active learning algorithm with a smart teacher for DOTAs. It is an efficient (polynomial) algorithm.
(white-box or gray-box)

• Give an active learning algorithm with a normal teacher for DOTAs. It has an exponential complexity increase.
(black-box)

• DOTAs can be actively learned.

© Jie An CyPhAI Workshop @ NII 23 / 33

Outline

1 Model learning and L∗ algorithm

2 Active Learning of DOTAs [TACAS20]

3 Active learning of DOTAs using Constraint solving [ATVA22]

Learning DOTAs using constraint solving

4 Conclusion and future work

© Jie An CyPhAI Workshop @ NII 24 / 33

Learning DOTAs using constraint solving

K Brute-force guessing leads to exponential number of table instances, which limits the scalability of the
algorithm in practical applications.

Smart teacher situation

ctx with resets

Normal teacher situation

· · · · · ·

ctx

Guessing every reset in the ctx.

, Basic ideas : maintain a single observation table that collects all results from previous membership queries,
rather than one observation table for each possible choice of resets.

1 Associate each row with a boolean variable representing reset information after running the timed word.

2 Encode the table conditions into the SMT formulas with the variables.

3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.

© Jie An CyPhAI Workshop @ NII 25 / 33

Go back to Nerode’s right congruence

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.
• One key step of L∗-style framework : determine if two words ω1 and ω2 end in different locations using some
suffixes.

, If u and v reach the same location, then uw and vw should reach some same location.

u

v

w
Same +/−

w

w

+ : uw ∈ L

− : vw ̸∈ L

u

v

K How to compare two timed words ω1 and ω2 using some suffixes e?

• Even if ω1 and ω2 reach the same location, ω1e and ω2emay reach two different locations.

q0 q1

q2

q3

a, [2, 5],⊥ b, [
4,∞

],⊤

b, [0, 4),⊤

• For example, ω1 = (a, 2) and ω2 = (a, 3), e = (b, 1)

© Jie An CyPhAI Workshop @ NII 26 / 33

Go back to Nerode’s right congruence

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.
• One key step of L∗-style framework : determine if two words ω1 and ω2 end in different locations using some
suffixes., If u and v reach the same location, then uw and vw should reach some same location.

u

v

w
Same +/−

w

w

+ : uw ∈ L

− : vw ̸∈ L

u

v

K How to compare two timed words ω1 and ω2 using some suffixes e?

• Even if ω1 and ω2 reach the same location, ω1e and ω2emay reach two different locations.

q0 q1

q2

q3

a, [2, 5],⊥ b, [
4,∞

],⊤

b, [0, 4),⊤

• For example, ω1 = (a, 2) and ω2 = (a, 3), e = (b, 1)

© Jie An CyPhAI Workshop @ NII 26 / 33

Go back to Nerode’s right congruence

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.
• One key step of L∗-style framework : determine if two words ω1 and ω2 end in different locations using some
suffixes., If u and v reach the same location, then uw and vw should reach some same location.

u

v

w
Same +/−

w

w

+ : uw ∈ L

− : vw ̸∈ L

u

v

K How to compare two timed words ω1 and ω2 using some suffixes e?

• Even if ω1 and ω2 reach the same location, ω1e and ω2emay reach two different locations.

q0 q1

q2

q3

a, [2, 5],⊥ b, [
4,∞

],⊤

b, [0, 4),⊤

• For example, ω1 = (a, 2) and ω2 = (a, 3), e = (b, 1)

© Jie An CyPhAI Workshop @ NII 26 / 33

Go back to Nerode’s right congruence

• Right congruence relation∼L : For u, v ∈ Σ∗, u ∼L v iff ∀w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L.
• One key step of L∗-style framework : determine if two words ω1 and ω2 end in different locations using some
suffixes., If u and v reach the same location, then uw and vw should reach some same location.

u

v

w
Same +/−

w

w

+ : uw ∈ L

− : vw ̸∈ L

u

v

K How to compare two timed words ω1 and ω2 using some suffixes e?
• Even if ω1 and ω2 reach the same location, ω1e and ω2emay reach two different locations.

q0 q1

q2

q3

a, [2, 5],⊥ b, [
4,∞

],⊤

b, [0, 4),⊤

• For example, ω1 = (a, 2) and ω2 = (a, 3), e = (b, 1)

© Jie An CyPhAI Workshop @ NII 26 / 33

Learning DOTAs using constraint solving

K Two timed words reach the same location, however may reach different locations after appending the same
suffix. (Belong to different regions), Alignment and comparison : a method to determine whether two timed words are distinguished using membership

queries with unknown reset information., A method to encode table conditions into the SMT formulas using the variables.

, Basic ideas : maintain a single observation table that collects all results from previous membership queries,
rather than one observation table for each possible choice of resets.

1 Associate each row with a boolean variable representing reset information after running the timed word.

2 Encode the table conditions into the SMT formulas with the variables.

3 Utilize the SMT solver to obtain a feasible choice of resets that make the table prepared.

© Jie An CyPhAI Workshop @ NII 27 / 33

Learning DOTAs using constraint solving

O S ∪ S+ ∪ R
E

ϵ (a, 0) (a, 4) (a, 5.5) (a, 0) (a, 0) (a, 4) (a, 9.5)
S ϵ b0 ⊤ ⊥ ¬b5 ⊥ b3 ⊥

ϵ
(a, 0) b1 ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

S+ (a, 4) (a, 5.5) b5 ¬b5 ⊥ ⊤ ⊥ ⊥ ⊥ (a, 5.5)

R
(a, 0) (a, 0) b2 ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

(a, 4) b3 b3 ⊥ ⊥ ⊥ ⊤ ⊥
(a, 9.5) b4 ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

, O = {Σ, S, S+,R, E, f,N}
• S contains timed words that are certainly distinct from each other ;
• S+ : additional rows in the observation table that are distinct from rows in S under some choices of resets.
• R collects all current membership queries under all different choice of resets.
• f summarizes when two corresponding timed words are distinguished, using formulas in terms of ending reset variables b.
• N is the current limit on the number of locations in the candidate automaton.

• Reset variables bi denotes whether clock resets after running ωi.
• (Innovation) Cells record all membership queries by comparing each pair of timed words in S∪ S+ ∪ R under all
valid combinations of last resets.
Example : Given suffix e = (a, 5.5), we have

f ((a, 4) , ϵ, 0, 0) = ⊥, f ((a, 4) , ϵ, 1, 0) = ⊤

this can be summarized as b3.

© Jie An CyPhAI Workshop @ NII 28 / 33

Experiment 4

Table 3 – Experimental results on learning DOTAs using constraint solving.

Group |∆| Method
#Membership #Equivalence |QH| #Learnt t(s)

Nmin Nmean Nmax Nmin Nmean Nmax

6_2_10 11.9
DOTAL 73 348.3 708 10 16.7 30 5.6 7/10 39.88
SL 104 1894.8 3929 11 20.8 35 5.6 10/10 0.78

4_4_20 16.3
DOTAL 231 317.0 564 27 30.8 40 4.0 6/10 100.223
SL 1740 3497.7 5329 24 32.8 42 4.0 10/10 1.42

7_4_20 26.0
DOTAL − 0/10 TO
SL 6092 9393.3 15216 44 51.5 69 7.0 10/10 2.90

10_4_20 39.1
DOTAL − 0/10 TO
SL 8579 16322.3 23726 59 76.5 93 10.0 10/10 5.89

12_4_20 47.6
DOTAL − 0/10 TO
SL 13780 20345.5 29011 70 88.0 102 12.0 10/10 10.052

14_4_20 58.4
DOTAL − 0/10 TO
SL 18915 28569.0 40693 92 110.6 126 14.0 10/10 14.692

AKM
40

DOTAL − 0/1 TO
(17_12_5) SL 3453 3453.0 3453 49 49.0 49 12 1/1 7.19

TCP
22

DOTAL − 0/1 TO
(22_13_2) SL 4713 4713.0 4713 32 32.0 32 20 1/1 19.04

CAS
23

DOTAL − 0/1 TO
(14_10_27) SL 4769 4769.0 4769 18 18.0 18 14 1/1 126.30

PC
42

DOTAL − 0/1 TO
(26_17_10) SL 10854 10854.0 10854 28 28.0 28 25 1/1 109.01

© Jie An CyPhAI Workshop @ NII 29 / 33

Outline

1 Model learning and L∗ algorithm

2 Active Learning of DOTAs [TACAS20]

3 Active learning of DOTAs using Constraint solving [ATVA22]

4 Conclusion and future work

© Jie An CyPhAI Workshop @ NII 30 / 33

Conclusion

• Current results
• Learning DOTAs from a smart teacher (gray-box or white-box, efficient)

and from a normal teacher 1 (black-box, inefficient) ;
• Learning DOTAs using constraint solving 2 (black-box, scalable) ;
• Extending in the PAC learning scheme when the exact equivalence oracle is not available 3 ;
• Adapting to learning real-time automata 4.

• Ongoing work
• Active learning of multi-clocks timed automata avoiding just mimicking region graphs.

• Which kind of Myhill-Nerode Theorem for deterministic timed automata we can have. [8]
• How compact the congruence relation can be.

• Passive learning from observations.
• Robust learning.
• Multi-objects learning from demonstrations. (Involving heuristic methods)

1. Jie An, Mingshuai Chen, Bohua Zhan, et al.. Learning One-Clock Timed Automata. TACAS’20.
2. Runqing Xu, Jie An*, Bohua Zhan. Active Learning of One-Clock Timed Automata using Constraint Solving. ATVA’22.
3. Wei Shen, Jie An*, et al. PAC Learning of Deterministic One-Clock Timed Automata. ICFEM’20
4. Jie An, Bohua Zhan, et al.. Learning nondeterministic real-time automata. IEEE-TECS (EMSOFT’21).

© Jie An CyPhAI Workshop @ NII 31 / 33

Reference I

[1] F. Aarts and F. W. Vaandrager.
Learning I/O automata.
In CONCUR’10, pages 71–85, 2010.

[2] B. Bollig, P. Habermehl, C. Kern, and M. Leucker.
Angluin-style learning of NFA.
In IJCAI’09, pages 1004–1009, 2009.

[3] S. Drews and L. D’Antoni.
Learning symbolic automata.
In TACAS’17, pages 173–189, 2017.

[4] O. Grinchtein, B. Jonsson, and M. Leucker.
Learning of event-recording automata.
Theor. Comput. Sci., 411(47) :4029–4054, 2010.

[5] F. Howar, B. Steffen, B. Jonsson, and S. Cassel.
Inferring canonical register automata.
In VMCAI’12, pages 251–266, 2012.

[6] Y. Li, Y. Chen, L. Zhang, and D. Liu.
A novel learning algorithm for Büchi automata based on family of DFAs and classification trees.
In TACAS’17, pages 208–226, 2017.

© Jie An CyPhAI Workshop @ NII 32 / 33

Reference II

[7] O. Maler and I. Mens.
Learning regular languages over large alphabets.
In TACAS’14, pages 485–499, 2014.

[8] O. Maler and A. Pnueli.
On recognizable timed languages.
In FOSSACS 2004, pages 348–362, 2004.

[9] M. Shahbaz and R. Groz.
Inferring Mealy machines.
In FM’09, pages 207–222, 2009.

[10] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen.
L∗-based learning of Markov decision processes.
In FM’19, pages 651–669, 2019.

[11] M. Tappler, B. K. Aichernig, K. G. Larsen, and F. Lorber.
Time to learn - learning timed automata from tests.
In FORMATS’19, pages 216–235, 2019.

[12] S. Verwer, M. de Weerdt, and C. Witteveen.
The efficiency of identifying timed automata and the power of clocks.
Inf. Comput., 209(3) :606–625, 2011.

© Jie An CyPhAI Workshop @ NII 33 / 33

	Model learning and L* algorithm
	Active Learning of DOTAs [TACAS20]
	Learning from a smart teacher
	Learning from a normal teacher

	Active learning of DOTAs using Constraint solving [ATVA22]
	Learning DOTAs using constraint solving

	Conclusion and future work

