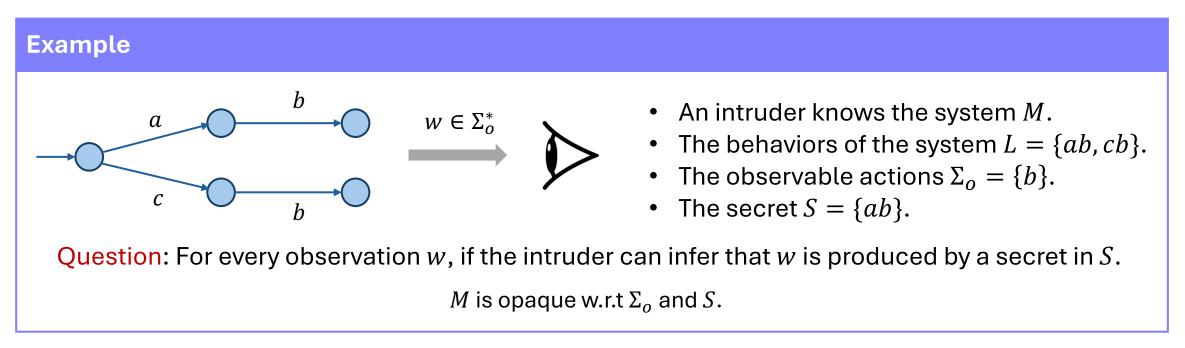


The Opacity of Timed Automata

Jie An^{1,3}, Qiang Gao¹, Lingtai Wang¹, Naijun Zhan^{2,1}, Ichiro Hasuo³

¹ Institute of Software, Chinese Academy of Sciences, Beijing, China ² School of Computer Science, Peking University, Beijing, China ³ National Institute of Informatics, Tokyo, Japan

2024-09-12 @ FM 2024, Milan



Outline

- Introduction to opacity problem
- Introduction to timed opacity
 - The dark side of timed opacity
- Revisiting the opacity of timed automata
 - The transformation of three kinds of timed opacity problems (language, initiallocation, current-location)
 - One-clock timed automata, TA under discrete-time semantics
 - Sufficient condition, necessary condition

What is opacity?

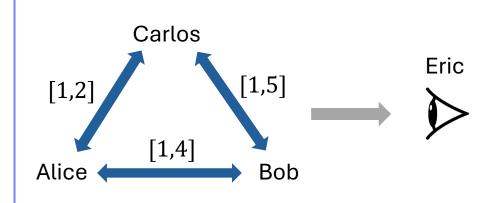
Opacity serves as a critical security and confidentiality property, which concerns whether an intruder can unveil a system's secret based on structural knowledge and observed behaviors.

The opacity problems:

- Language-based opacity: the secret is a set of system languages
- Initial-state opacity: the secret is a set of initial states
- Current-state opacity: the secret is a set of states

Discrete-Event Systems

Outline


Introduction to opacity problem

- Introduction to timed opacity
 - The dark side of timed opacity
- Revisiting the opacity of timed automata
 - The transformation of three kinds of timed opacity problems (language, initiallocation, current-location)
 - One-clock timed automata, TA under discrete-time semantics
 - Sufficient condition, necessary condition

What is timed opacity?

Considering opacity problems in timed systems.

Example

- Alice, Bob, and Carlos can send messages to each other, and Carlos is a secret participant.
- Eric can only observe Alice and Bobs' behaviors

1 0

• A system behavior: Alice
$$\xrightarrow{1.2}$$
 Carlos $\xrightarrow{2.1}$ Bob

• Corresponding observation: Alice $\xrightarrow{3.3}$ Bob

Question: if Eric can infer that there is a third participant in the system. Yes, when observing Alice $\stackrel{t}{\leftrightarrow}$ Bob where t > 4

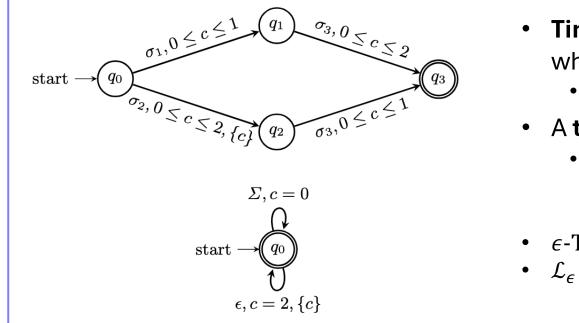
What is timed opacity?

Considering opacity problems in timed systems.

• Dark side: the opacity problem of timed automata is undecidable. [Cassez09]

Motivation

- The decidability for the opacity problems of one-clock timed automata.
 - The universality problem of one-clock timed automata is decidable.
- Conjecture in [Cassez09]: the opacity of TA under the discrete-time semantics is decidable.
- The decidability for the opacity problems of specific subsets of TA.
 - Sufficient condition and necessary condition for the decidability.


Outline

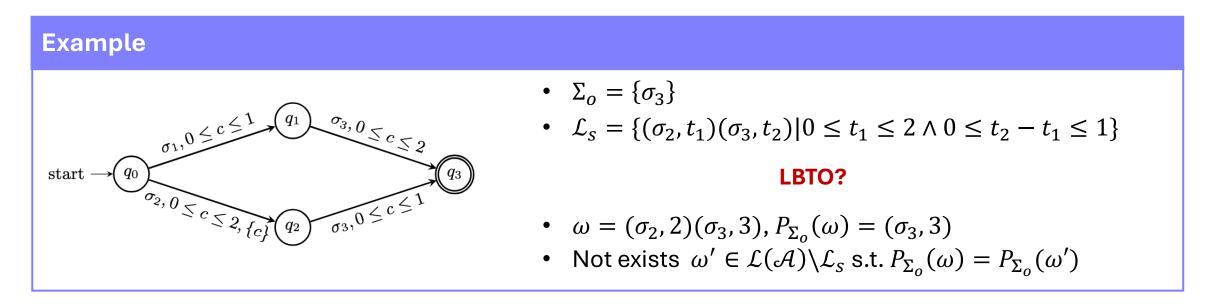
- Introduction to opacity problem
- Introduction to timed opacity
 - The dark side of timed opacity
- Revisiting the opacity of timed automata
 - The transformation of three kinds of timed opacity problems (language, initiallocation, current-location)
 - One-clock timed automata, TA under discrete-time semantics
 - Sufficient condition, necessary condition

Timed automata

Extending finite-state automata with a finite set of clock variables.

Example

- Timed word $\omega \in (\Sigma \times \mathbb{R}_{\geq 0})^*$: $(\sigma_1, t_1) (\sigma_1, t_2) \dots (\sigma_n, t_n)$, where $t_1 \leq t_2 \dots \leq t_n$.
 - $(\sigma_2, 1)(\sigma_3, 2)$ is an accepting timed words.
- A timed language is a set of timed words.
 - $\mathcal{L} = \{(\sigma_1, t_1)(\sigma_3, t_2) | 0 \le t_1 \le 1 \land 0 \le t_2 \le 2\} \cup \{(\sigma_2, t_1)(\sigma_3, t_2) | 0 \le t_1 \le 2 \land 0 \le t_2 t_1 \le 1\}$
- $\begin{array}{l} \bullet \quad \epsilon\text{-TA} \supset \text{TA} \\ \bullet \quad \mathcal{L}_{\epsilon} = \{(\sigma_1, t_1) \cdots (\sigma_n, t_n) \in (\Sigma \times \mathbb{R}_{\geq 0})^* | \forall i \geq 0, t_i \in 2\mathbb{N} \} \end{array}$


• Given a subset $\Sigma_o \subseteq \Sigma$, a projection on timed words $P_{\Sigma_o}: (\Sigma \times \mathbb{R}_{\geq 0})^* \to (\Sigma_o \times \mathbb{R}_{\geq 0})^*$ s.t.

$$P_{\Sigma_{o}}(\epsilon) = \epsilon \qquad P_{\Sigma_{o}}((\sigma, t) \cdot \omega) = \begin{cases} (\sigma, t) \cdot P_{\Sigma_{o}}(\omega) & \text{if } \sigma \in \Sigma_{o} \\ P_{\Sigma_{o}}(\omega) & \text{otherwise} \end{cases}$$

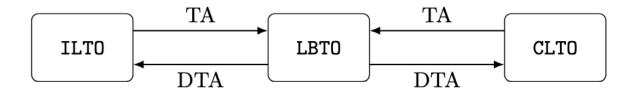
The opacity problems of timed automata

Language-based timed opacity : given a TA $\mathcal{A} = (\Sigma, Q, Q_0, Q_f, C, \Delta)$, an observable alphabet $\Sigma_o \subseteq \Sigma$, and a secret timed language \mathcal{L}_s , then \mathcal{A} is **language-based timed opaque (LBTO)** w.r.t Σ_o and \mathcal{L}_s iff

 $\forall \omega \in \mathcal{L}(\mathcal{A}) \cap \mathcal{L}_{s}, \exists \omega' \in \mathcal{L}(\mathcal{A}) \setminus \mathcal{L}_{s} \text{ s.t. } P_{\Sigma_{o}}(\omega) = P_{\Sigma_{o}}(\omega')$

The opacity problems of timed automata

Location-based timed opacity : given a TA $\mathcal{A} = (\Sigma, Q, Q_0, Q_f, C, \Delta)$, an observable alphabet $\Sigma_o \subseteq \Sigma$, and a secret set of locations $Q_s \in Q$, then

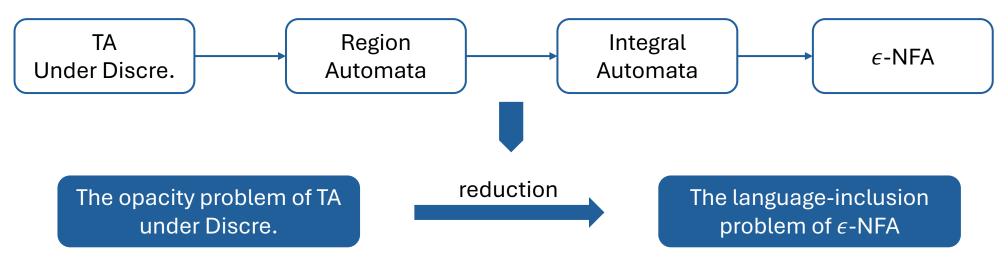

• \mathcal{A} is initial-location timed opaque (ILTO) w.r.t Σ_o and $Q_s \in Q_o$ iff

 $\forall \omega \in Tr_{\mathcal{A}}(Q_s), \exists \omega' \in Tr_{\mathcal{A}}(Q_0 \setminus Q_s) \text{ s.t. } P_{\Sigma_o}(\omega) = P_{\Sigma_o}(\omega')$

• \mathcal{A} is current-location timed opaque (CLTO) w.r.t Σ_o and $Q_s \in Q$ iff

$$\forall \omega \in Tr_{\mathcal{A}}(Q_o, Q_s), \exists \omega' \in Tr_{\mathcal{A}}(Q_0, Q \setminus Q_s) \text{ s.t. } P_{\Sigma_o}(\omega) = P_{\Sigma_o}(\omega')$$

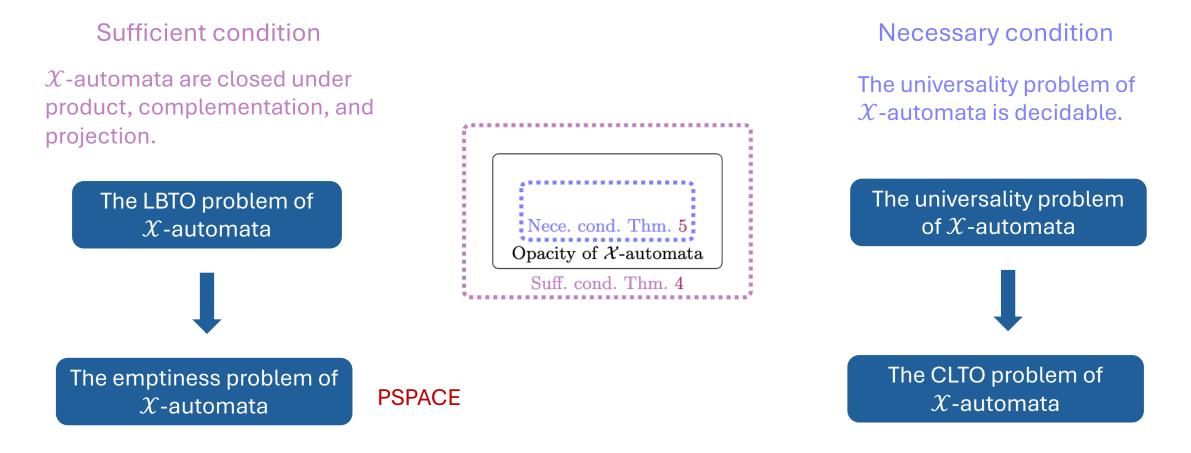
Transformation between LBTO, ILTO, and CLTO



Results

(1) The LBTO, ILTO, and CLTO problems of one-clock timed automata (OTA) are undecidable.

(2) A constructive proof for the decidability of timed opacity under discrete-time semantics.


For example, $\omega = (\sigma_1, 2)(\sigma, 3)$, $Tick(\omega) = \checkmark \sigma_1 \checkmark \sigma_2$

PSPACE-complete

11

Results

(3) A sufficient condition and a necessary condition for the decidability of timed opacity of X-automata

Thank you!