
Learning Deterministic One-Clock Timed
Automata via Mutation Testing

Xiaochen Tang1 , Wei Shen1 , Miaomiao Zhang1(B), Jie An2 ,
Bohua Zhan3,4 , and Naijun Zhan3,4

1 School of Software Engineering, Tongji University, Shanghai, China
{xiaochen9697,weishen,miaomiao}@tongji.edu.cn

2 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
3 State Key Laboratory of Computer Science, Institute of Software,

CAS, Beijing, China
4 University of Chinese Academy of Sciences, Beijing, China

Abstract. In active learning, an equivalence oracle is supposed to
answer whether a hypothesis model is equivalent to the system under
learning. Its implementation in real applications is considered a major
bottleneck for active automata learning. The problem is especially diffi-
cult in the context of learning timed automata due to the infinitely large
state space involved. In this paper, following the framework of combin-
ing mutation analysis and random testing, we propose an implementation
of equivalence oracle in the context of learning deterministic one-clock
timed automata (DOTAs). This includes two learning-friendly mutation
operators, a heuristic test-case generation method, and a score-based
test-case selection method. We implemented a prototype applying our
approach by extending an existing tool on active learning of DOTAs and
conducted extensive experiments. The results indicate that our method
improves upon existing methods on the rate of learning correct models,
the number of test cases required, and accumulated delay time in test
cases.

Keywords: Active learning · Timed automata · Model-based
mutation testing

1 Introduction

Active (model) learning [28] has emerged as a highly effective technique for learn-
ing the model of a system under learning (SUL). Most of active learning meth-
ods follow the L∗ framework proposed by Angluin [12]. The learning process to
achieve a hypothesis of the SUL can be viewed as an interaction between a learner
and a teacher, where the learner asks membership queries (MQs) and equivalence
queries (EQs) to a teacher who holds oracles to answer these queries. The former
corresponds to a single test of the SUL to check whether a sequence of actions

This work has been partially funded by NSFC under grant No. 61972284, 62032019,
62032024, 62192732, 62192730, and 61625206, by DFG project 389792660-TRR 248.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bouajjani et al. (Eds.): ATVA 2022, LNCS 13505, pp. 233–248, 2022.
https://doi.org/10.1007/978-3-031-19992-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19992-9_15&domain=pdf
http://orcid.org/0000-0001-9895-6067
http://orcid.org/0000-0003-0034-9758
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0001-5377-9351
http://orcid.org/0000-0003-3298-3817
https://doi.org/10.1007/978-3-031-19992-9_15

234 X. Tang et al.

can be executed. EQs check whether a learned hypothesis represents the SUL.
The teacher either answers affirmatively or generates a counterexample showing
the difference between the SUL and the hypothesis. Compared to active learning
of deterministic finite state automata (DFAs) [12], learning timed automata [7] is
much more complex since it involves an infinite set of timed actions and clock reset
information while the alphabets of DFAs is finite. Among the existing works [8–
10,16,17,29] on active learning of the different timed models, An et al. proposed
an active learning method for deterministic one-clock timed automata (DOTAs)
in [8]. Inherited from L∗, this method also assumes an ideal setting where the EQs
can be answered exactly by an oracle. However, exact equivalence oracles are usu-
ally unrealistic in most practical situations, which is a well-known problem that
learning methods based on L∗ in practice face and can be considered as “the true
bottleneck of automata learning” [13].

To address the issues mentioned above, various attempts have been carried
out. For real applications, one of the most widely studied approach for EQs
is conformance testing [1,13–15,22,25]. However, the size of the constructed
test suite is usually exponential in the number of states of the SUL, which
makes it inefficient in many industrial scenarios. Another limitation is that most
of the existing methods for timed systems do not consider the accumulated
delay time of test suites. Therefore, a new target for conformance testing is to
find counterexamples fast, rather than trying to prove equivalence [19]. Model-
based testing [27], a popular technique for automated test-case generation, can
be used as an approach for conformance testing. Commonly relying on some
coverage criterion, it produces new test cases until that criterion is satisfied.
Model-based mutation testing [2,3,23] uses faults as such a criterion: the original
model is modified by different fault injections, called mutation operators, which
results in a set of faulty models called mutants. In [6], Aichernig et al. combined
random testing and mutation analysis [11] to learn Mealy machines and show
their effectiveness. Here random testing is used to achieve high variability of
tests, while mutation analysis is used to ensure appropriate coverage.

In this paper, we propose a conformance testing approach combining random
testing and mutation-based testing to replace exact EQs in the active learning
of DOTAs. Even though many existing studies proposed mutation operators for
timed automata, which generate mutants covering specific faults [4,26,31], there
are many redundancies among these mutation operators, and the mutants gener-
ated by these operators are possibly non-deterministic. These make the existing
mutation operators not well-suited to the context of active automata learning.
Thus, we design two mutation operators to address DOTAs learning. The app-
roach we presented aims at finding counterexamples quickly, and reducing the
total amount of time of executing test cases, in addition to the reduction of tests
as in [6]. Moreover, to design the test suits, we take previous counterexamples
into consideration and the modifications between two successive hypotheses in
the learning procedure for DOTAs. Our contributions are summarized as follows.

– A heuristic algorithm for random test-case generation. We take counterexam-
ples into consideration and apply three heuristics to random testing, aiming
at generating more useful test cases.

Learning Deterministic One-Clock Timed Automata via Mutation Testing 235

– Two learning-friendly mutation operators. In contrast to generating only first-
order mutants [4,26,31], which usually contain one fault, we take into account
the deterministic behaviours of the model and the modifications between two
successive hypotheses obtained in the learning process, so that more faults
are considered in the construction of mutants.

– A mutation and score-based selection of test cases. In addition to mutation
coverage, we also take the length and accumulated delay time of the test cases
into consideration to achieve faster testing.

– An implementation of our method. To investigate the effectiveness and effi-
ciency of our method, we extend the prototype tool for DOTAs learning [8]
and compare our method with various existing methods.

The rest of the paper is organized as follows. In Sect. 2, we review the learning
algorithm for DOTAs in [8] and the model-based mutation testing framework. In
Sect. 3, we describe the mutation-based testing in the context of active learning
of DOTAs in detail. In Sect. 4, we introduce two mutation operators used in
the mutation-based testing framework. The experimental results are reported in
Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

2.1 Deterministic One-Clock Timed Automata

In this paper, we consider a subclass of timed automata [7] that are deterministic
and contain only a single clock, called Deterministic One-Clock Timed Automata
(DOTAs). Let N be the natural numbers and R≥0 be the non-negative real
numbers. We use � to stand for true and ⊥ for false. Let B = {�,⊥}. Let
c be the clock variable, denote by Φc the set of clock constraints of the form
φ:: = � | c �� m | φ ∧ φ, where m ∈ N and �� ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automaton
(OTA) is a 6-tuple A = (Σ,Q, q0, F, c,Δ), where Σ is a finite set of actions,
Q is a finite set of locations, q0 is the initial location, F ⊆ Q is a set of final
locations, c is the unique clock and Δ ⊆ Q × Σ × Φc × B × Q is a finite set of
transitions.

A transition δ ∈ Δ is a 5-tuple (q, σ, φ, b, q′), where q, q′ ∈ Q are the source
and target locations respectively, σ ∈ Σ is an action, φ ∈ Φc is a clock constraint,
and b is the reset indicator. Such δ allows a jump from q to q′ by performing an
action σ if the current clock valuation ν satisfies the constraint φ. We also call φ
as a guard. Meanwhile, clock c is reset to zero if b = � and remains unchanged
otherwise. A clock valuation is a function ν : c 	→ R≥0 that assigns a non-
negative real number to the clock. For t ∈ R≥0, let ν + t be the clock valuation
with (ν + t) (c) = ν (c) + t. A state is a pair (q, ν), where q ∈ Q and ν is a clock
valuation. A timed action is a pair (σ, t) that indicates the action σ is applied
after t time units since the occurrence of the previous action. A timed trace is a

236 X. Tang et al.

sequence ω = (σ1, t1) (σ2, t2) . . . (σn, tn) of timed actions (σi, ti) ∈ Σ × R≥0. A
finite run ρ of A over a timed trace ω = (σ1, t1) (σ2, t2) . . . (σn, tn) is a sequence
of timed states and timed actions ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn)

where ν0 = 0, and for all 1 ≤ i ≤ n there exists a transitions (qi−1, σi, φi, bi, qi) ∈
Δ such that νi−1 + ti satisfies φi, and νi(c) = 0 if bi = �, νi(c) = νi−1(c) + ti
otherwise. Since time values ti represents delay times, we call such a timed trace
a delay-timed word. The delay-timed word is observed outside from the view of
the global clock. On the other hand, the behavior can also be observed inside
from the view of the local clock. This results in a logical-timed word of the form
γ = (σ1, μ1)(σ2, μ2) · · · (σn, μn) with μi = ti if i = 1 or bi−1 = �, otherwise
μi = μi−1 + ti. The time spent in a timed trace ω, denoted time(ω) is the sum
of all delays in ω, for example, time(ε) = 0 and time((a, 1.0)(b, 1.5)) = 2.5.

Definition 2 (Deterministic OTA). An OTA is a deterministic one-clock
timed automaton (DOTA) if there is at most one run for a given timed word.

A DOTA A is complete if for any location q and action σ, the constraints form
a partition of R≥0. Any incomplete DOTA A can be transformed into a com-
plete DOTA accepting the same timed language by adding a non-accepting sink
location qsink , and adding transitions to the sink location for each unavailable
action [8]. We therefore assume that we are working with complete DOTAs.

2.2 Active Learning Algorithm for DOTAs

In this section, we provide a brief description of the active learning algorithm [8]
for a black-box SUL which can be represented by a DOTA A. The existing
work distinguishes two learning scenarios: learning from a normal teacher or a
smart teacher. As the work in this paper concerns EQs only, it applies to both
normal teacher and smart teacher scenarios. For the experiments, we mainly
consider the case of smart teachers. In practical applications, this corresponds
to executing the test case, where information about clock-resets is known by
code instrumentation or watchdogs (refer to the concept of testable systems in
[15,18]). The learner maintains an observation table to collect the answers of
MQs. The table will be transformed to a DOTA H as a hypothesis if it satisfies
several preparedness conditions. The learner then performs an EQ by submitting
H to the teacher. In theory, we assume that the teacher holds an equivalence
oracle to answer EQs, returning whether the timed languages of H and A are
equivalent. If the answer is no, the teacher also returns a logical-timed word
with reset information as a counterexample. The learner then performs more
MQs guided by the counterexample. The learning loop terminates when an EQ
returns a positive answer. We refer to [8] for more details.

However, since such equivalence oracles may not exist in practical situations,
the equivalence oracle is often achieved through conformance testing, i.e., asking
a lot of MQs to answer a single EQ. If, for every MQ, the output produced
by the SUL is consistent with hypothesis H, the answer to the EQ is “Yes”.
Otherwise, the answer “No” is provided, together with a counterexample that

Learning Deterministic One-Clock Timed Automata via Mutation Testing 237

indicates a difference between H and the SUL. In this paper, we address the
implementation of equivalence oracle through a combination of random testing
and mutation analysis.

2.3 Model-Based Mutation Testing

Model-based mutation testing [2,3,23] is a promising technique combining the
central ideas of mutation testing [21] and model-based testing [27]. By mak-
ing some adaptions, it can be regarded as an equivalence oracle in the context
of active learning. The process starts with the current hypothesis H. A set of
mutants from H are generated by mutation operators. Once all mutants are cre-
ated, the actual test suite generation starts. The original H is compared to each
mutant via an equivalence check (this can be done exactly since models for both
H and the mutant are available). If a mutant M is not equivalent to H, the
checking procedure returns a trace that serves as a witness, and this trace can
be converted into a test case.

The equivalence checks in the above process can be computationally expen-
sive. Therefore, the work in [6] considers a new model-based mutation testing
framework combined with random testing for learning Mealy machines, and the
experiments have demonstrated that a combination of random exploration and
mutation-based test-case generation is beneficial. Briefly, the framework includes
the following steps to generate test suites for conformance testing. First, it uti-
lizes random testing to generate a large set of test cases T. Then it analyzes
the mutation coverage of each test case in T, i.e., it executes each test case and
determines which of the mutants produces outputs different from H. Finally, the
test suite is created by selecting a subset of T based on the computed mutation
coverage. After that, the conformance testing between H and the SUL can be
conducted by executing test cases of the test suite on both respectively. The test
case producing different outputs between H and the SUL is a counterexample
to the equivalence, which is utilized to further refine the current hypothesis H.

3 Mutation-Based Testing for DOTAs

In this section, we introduce our mutation-based testing process for solving the
EQs in learning DOTAs. We first describe the whole process and then present
the heuristic method to generate test cases and the mutation-based selection of
the test suite. The details on the mutation operators and mutation generation
are described in Sect. 4.

3.1 The Process Overview

Following the idea in [6], we use a combination of random testing, to achieve
high variability of tests, and mutation analysis, to address coverage appropri-
ately. However, given the particular characteristics of DOTAs learning, that is,
counterexample processing will generate two kinds of modifications between two

238 X. Tang et al.

Fig. 1. The overview of mutation-testing-based equivalence checking for learning
DOTAs.

successive hypotheses, we have to design new mutation operators and adapt the
framework accordingly. The whole process is depicted in Fig. 1. The input for
this process is a hypothesis H, a learned intermediate DOTA, while the output
is the answer of an EQ.

1. From the model H, we first develop a heuristic test-case generation algorithm
to obtain a large set of test cases T (see Sect. 3.2).

2. Independently, we generate a set of mutants M from H based on the timed
mutation operator (see Sect. 4.1) and the split-location mutation operator
(see Sect. 4.2).

3. Using a score-based test-case selection method, together with mutation anal-
ysis, a subset Tsel of T is selected (see Sect. 3.3). The purpose is to select a
subset of test cases from T that are likely to distinguish between the original
hypothesis H and the mutants as the test suite to execute, i.e. to select the
test cases that cover the mutants.

4. Finally, we execute all test cases in Tsel on the hypothesis H and the SUL
respectively. A test case is a counterexample if producing different outputs
on the SUL and H. If such a counterexample is found, it is returned to the
learning algorithm. Otherwise, the EQ returns a positive answer.

Different from [6] using only one mutation operator for generating mutants,
we hereby use two mutation operators to cover the different possibilities of muta-
tions for timed automata. This produces a set of mutants helpful for generating
a more complete test suite that is able to find potential differences between H
and the SUL. Our experiments have shown that both mutation operators are
necessary for improving the rate of learning the correct model of the SUL. In
addition, to avoid interleaving complexity, instead of simultaneously using two
mutation operators to generate test cases, we divide the process into two phases
using two operators respectively. In our case, we choose to first use the timed

Learning Deterministic One-Clock Timed Automata via Mutation Testing 239

Algorithm 1. Heuristic test-case generation

Input: hypothesis H = (Σ, Q, q0, F, c, Δ);
the previous counterexample ctx;
the maximal length len of “xy”
part of a test case; three probabi-
lity values pstart, pvalid and pstop.

Output: a test case t.

1: t ← ε;
2: qc ← q0; ν ← 0;
3: Qvisited ← ∅;
4: if prob(pstart) then t ← ctx;

5: for i ← 0 to |ctx| − 1 do

6: qc, ν ← execute((qc, ν), ctx[i]);
7: Qvisited ← Qvisited ∪ {qc};
8: while |t| < len do

9: if prob(pvalid) then
10: Δ′ ← {δ|δ = (q, σ, φ, b, q′) ∈

Δ ∧ q = qc ∧ q′ �= qsink};
11: else

12: Δ′ ← {δ|δ = (q, σ, φ, b, q′) ∈
Δ ∧ q = qc ∧ q′ = qsink};

13: if Δ′ �= ∅ then
14: (q, σ, φ, b, q′) ← getRandom(Δ′);
15: t ← getRandomDelay(ν, φ);

16: if t �= None then
17: t ← t · (σ, t);

18: qc, ν ← execute((qc, ν), (σ, t));
19: Qvisited ← Qvisited ∪ {qc};
20: if prob(pstop) then

21: break;

22: if Q\Qvisited �= ∅ then

23: qt ← getRandomLocation(Q\Qvisited);
24: ω ← findTimedTrace((qc, ν), qt);
25: if ω �= ε then

26: t ← t · ω;

27: return t;

mutation operator only, and if no counterexample is found, then use the split-
location mutation operator and repeat Step 2 to Step 4.

3.2 Heuristic Test-Case Generation

Random testing is a widely-used method and has been integrated in the learning
library LearnLib [20] as an EQ method for untimed models. In this section, we
apply three heuristics to generate test cases randomly, aiming at generating
more useful test cases. Algorithm 1 presents the generation process, containing
three main steps corresponding to the heuristics. The inputs include the current
hypothesis H and several relevant parameters, and the output is a test case
t ∈ (Σ × R≥0)∗ of the form xyz, where x is the prefix, y a random sequence of
timed actions, and z the suffix. Function prob(p) returns true with probability
p and false with probability 1 − p. The generation process is performed many
times to generate a large-size (can be parameterized by the user) test set T,
whose size is related to the number of actions and transitions, and the timing
parameters of H (see Sect. 5).

1. Firstly, according to our observation that a counterexample is often prefixed
with its previous counterexample, we reuse the previous counterexample ctx
as the prefix x with probability pstart (Line 4 to Line 7).

2. Then, consider for many reactive systems, from the current timed state, ran-
domly selecting an action is likely to transit to a sink location, since not all
timed actions can be executed or make sense at the current state. Therefore,
we prefer to explore non-sink locations with probability pvalid when using
random walking method to find timed actions (σ, t). Such timed actions form
the segment y extending the test case (Line 8 to Line 21). The parameter len

240 X. Tang et al.

Algorithm 2. Mutation and score-based test-case selection

Input: M; TM for all M ∈ M;
Vt for all t ∈ T.

Output: a subset of test cases Tsel .

1: Tsel ← ∅;
2: while M �= ∅ do
3: Mopt ← argminM∈M |TM|;

4: if TMopt �= ∅ and TMopt ∩ Tsel

= ∅ then
5: topt ← argmax t∈TMopt

Vt;

6: Tsel ← Tsel ∪ {topt};

7: M ← M\{Mopt};

8: return Tsel ;

limits the maximal length of the “xy” part. The exploring process stops with
probability pstop at the end of each round.

3. Finally, we add the path from the current location to a non-visited location
as suffix z to increase the coverage of each test case (Line 22 to Line 26).

3.3 Mutation and Score-Based Test-Case Selection

In order to improve the mutation coverage of test cases, we define a special
output function in response to a given delay-timed word. Let D = {+,−} be the
output domain, indicating whether the trace is accepted (+) or not (−).

Definition 3 (Output function). Given a test case (delay-timed word) t =
(σ1, t1) (σ2, t2) · · · (σn, tn) and a (complete) DOTA A = (Σ,Q, q0, F, c,Δ), cor-
responding a run ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn) in A, the output

function for the test case is defined as outA(t) = o1o2 · · · on, where oi = + if
qi ⊆ F and oi = − otherwise.

Given two models A1 and A2, we say t passes if outA1(t) = outA2(t), otherwise,
it fails and serves as a counterexample to the equivalence.

After the heuristic test-case generation described previously, we have
obtained a large-size test set T. However, it may contain just a small num-
ber of test cases that can be counterexamples due to the randomness. Therefore,
we further need to select a subset Tsel from T consisting of test cases that are
more likely to be counterexamples. Normally, the selection is based purely on a
kind of coverage, e.g. location or transition coverage. However, unlike testing for
Mealy machines [6,14] or other finite labeled transition systems, for timed sys-
tems, we should also consider the time elapsed in two consecutive input actions.
Therefore, the main objective in addition to the number of test cases is to reduce
the accumulated delay time of all test cases used in conformance testing, pro-
vided that the maximum mutant coverage is achieved. Our selection process is
based on a set of mutants of the hypothesis H. We leave the details of mutation
generation in Sect. 4 and suppose that a set of mutants M has been generated.

Algorithm 2 presents the mutation and score-based selection method, which
considers several factors of the test cases. At beginning, we need to prepare
the inputs. First, we associate each test case t ∈ T with a set of mutants Mt

covered by t, i.e. Mt = {M ∈ M | outH(t) �= outM(t)}, and associate each

Learning Deterministic One-Clock Timed Automata via Mutation Testing 241

mutant M ∈ M with a set of test cases TM ∈ T that can cover M, i.e.
TM = {t ∈ T | outH(t) �= outM(t)}. Then, we use the following four attributes
to decide whether a test case t is selected: (1) time(t) is the total delay time
of t, (2) |t| is the length of t, (3) |Mt| is the mutation coverage of t, and (4)
|Ct| is the transition coverage of t. After normalization for the attributes, we
acquire the score Vt = a · (1− time(t)′)+b · (1−|t|′)+ c · |Mt|′ +d · |Ct|′, where
a,b, c,d are the weights. Upon obtaining TM for each mutant M and Vt for each
test case t, the algorithm follows the basic idea that the higher the score value,
the more likely the test case will be selected. So, at each round, first select the
mutant M covered by the least number of test cases (Line 3). If the currently
selected test cases Tsel cannot cover it, the test case t with the largest score Vt

is chosen from TMopt
and added to Tsel (Line 4 to Line 6). Then remove M

from M. The steps repeat until all mutants covered by at least one test case are
considered, i.e. the selected test cases have been able to achieve the maximum
possible coverage of the mutant set. Mutants that cannot be covered by any test
case are removed by constraint TMopt

�= ∅ in Line 4.

4 Learning-Friendly Mutation Operators for DOTAs

In order to provide the mutants of hypothesis H for the processes in Sect. 3, we
need to design suitable mutation operators for DOTAs. Considering the learning
method in [8], we find that counterexample handling will lead to generating two
kinds of modifications between the successive hypotheses H and H′. Similar
to the terms used in [24], the first is called expansive modification, which means
that H′ has more locations and/or transitions than H. While the second is called
non-expansive modification, which implies that only the timed constraints and/or
the reset indicators of some transitions differ between H and H′. Inspired by the
observations, we design two mutation operators. The first one is timed mutation
operator given in Sect. 4.1, which includes a series of mutation operations specific
to DOTAs learning, corresponding to the transition changes of the expansive and
non-expansive modification. The second, split-loaction mutation operator given
in Sect. 4.2, is closely related to [6], corresponding to the location change of the
expansive modification. In terms of the two designed operators, all the mutants
generated from H are still deterministic automata.

4.1 Timed Mutation Operator

Given the current hypothesis H, the timed mutation operator is conducted
on every transition in turn to generate mutants. Consider a transition δ =
(q, σ, φ, b, q′), the basic idea is as follows. For the timed interval φ, we will first
slice it into sub-intervals as a partition (see Definition 4), resulting in several
new transitions. Then we conduct two operations (see Definition 5) on each new
transition to generate mutants. One operation is to change the target location
of one transition, which helps us to modify the timed interval φ. The other oper-
ation is to change the reset indicator of one transition. Actually, we can also
apply the two operations to some transitions at the same time.

242 X. Tang et al.

Algorithm 3. Mutants generation via the timed mutation operator

Input: a DOTA H = (Σ, Q, q0, F, c, Δ);
the greatest integer constant B;
a slicing step w.

OUTPUT: a set of mutants M.

1: M ← ∅
2: for each δ = (q, σ, φ, b, q′) ∈ Δ do
3: Δs ← {(q, σ, φs, b, q

′) | φs ∈
Sg(φ, B, w)};

4: for each δs ∈ Δs do
5: Δm ← rt(δs) ∪ fl(δs)∪

fl ◦ rt(δs);
6: for each δm ∈ Δm do
7: M ← (Σ, Q, q0, F, c, Δ\{δ};

∪Δs\{δs} ∪ {δm});
8: M ← M ∪ {M};

9: return M;

Definition 4 (Slicing timed interval). Let B be the greatest integer constant
appearing in the DOTA to be learned (can also be set by the user), and w ∈ N>0

be the slicing step. Given a timed interval 〈α, β〉, where 〈∈ {(, [} and 〉 ∈ {),]},
the slicing can generate a partition of 〈α, β〉 as follows:

– If β > B (including β = ∞), Sg(〈α, β〉, B,w)
= {〈α, α + w) | α + w ≤ B} ∪ {[α + w ∗ i, α + w ∗ i] | α + w ∗ i ≤ B, i ∈ N>0}
∪ {(α + w ∗ i, α + w ∗ (i + 1)) | α + w ∗ (i + 1) ≤ B, i ∈ N>0}
∪ {(α + w ∗ i, β〉 | α + w ∗ i ≤ B ∧ α + w ∗ (i + 1) > B, i ∈ N>0}

– If β ≤ B, Sg(〈α, β〉, B,w)
= {〈α, α + w) | α + w < β} ∪ {[α + w ∗ i, α + w ∗ i] | α + w ∗ i < β, i ∈ N>0}
∪ {(α + w ∗ i, α + w ∗ (i + 1)) | α + w ∗ (i + 1) < β, i ∈ N>0}
∪ {(α + w ∗ i, β〉 | α + w ∗ i < β ∧ α + w ∗ (i + 1) ≥ β, i ∈ N>0}

Therefore, for a transition δ = (q, σ, φ, b, q′) in H, φ is sliced into several
timed intervals Sg(φ,B,w). This implies that instead of δ, a new transition set
Δs = {(q, σ, φs, b, q

′) | φs ∈ Sg(φ,B,w)} with |Δs| = |Sg(φ,B,w)| is generated.
Obviously, if the slicing step w = 1, the intervals in Sg are regions [7].

Definition 5 (Timed mutation operations). Given a sliced transition δs =
(q, σ, φs, b, q

′) ∈ Δs, the timed mutation operator includes the following two oper-
ations: (1) Re-target: rt(δs) = {(q, σ, φs, b, q

′′) | q′′ ∈ Q\q′}; (2) Flop-reset:
fl(δs) = {(q, σ, φs, b

′, q′) | b′ ∈ B\b}.
Algorithm 3 presents the procedure generating mutants from H using the

timed mutation operator. First, for each transition δ, we build the sliced transi-
tion set Δs (Line 3). Second, for each sliced transition δs ∈ Δs, we conduct the
mutation operations rt and fl separately and both on it, and thus get a mutated
transition set Δm (Line 5). Then, for each mutated transition δm ∈ Δm, we can
build a mutant by removing δ, δs, and adding the new mutated transition δm

to the transition set (Line 7). Therefore, every mutant is obtained from H via
the options of changing the timed constraints, or flopping the reset indicator, or
adding new transitions, or a combination of the above three, so that the mutant
gets closer to the successor hypothesis H′. To simplify a mutant, we merge two
transitions if they have the same source location, target location, action, and
reset indicator respectively. For example, given two transitions (q, σ, [2, 4], b, q′)
and (q, σ, (4, 5], b, q′), the merged transition is (q, σ, [2, 5], b, q′).

Learning Deterministic One-Clock Timed Automata via Mutation Testing 243

4.2 Split-Location Mutation Operator

The split-location mutation operator mainly involves modification on locations
while not the timed information on transitions, which was first introduced in
[6] for the learning of Mealy machines. To deal with DOTAs, we make some
modifications for the operator that includes the execution of the following steps:
(1) making abstraction from a DOTA to a DFA by labeling every transition with
a different abstract action u, (2) mutating the DFA using split-location operator
referring to [6], and (3) transforming the mutated DFA back to a DOTA as a
mutant of the original DOTA. In order to instantiate the split-location mutation
operator in our implementation and experiments, we also need two parameters:
nacc is an upper bound on the number of access sequences leading to a split
location and k is the length of a distinguishing sequence.

5 Implementation and Experiments

To further investigate the efficiency of the proposed method, we extend the exist-
ing DOTAs learning prototype tool in [8] with the proposed EQ implementation
and evaluate it on a set of DOTAs. The experiments are meant to check whether
the proposed technique is an effective implementation of equivalence oracle to
find counterexamples for incorrect hypotheses under the DOTAs learning set-
ting. The prototype tool and experiments are available on the tool page https://
github.com/Anna9697/mut learn DOTAs.

5.1 Case Studies

First, we evaluated the DOTAs learning with mutation-based testing on 18 ran-
domly generated DOTAs. We divided them into 6 groups depending on the
number of locations (|Q|), the number of untimed actions (|Σ|), and the max-
imum constant appearing in the models (B). In addition, there are also three
manually created examples from the real world: a lamp touch control model
(Lamp) from [5], a coffee vending machine model (Coffee) from [30], and the
model of TCP protocol (TCP) from [8].

For each case, we executed 15 times to acquire the average number of tests
(#tests) and actions (#actions), the average accumulated delay time in tests
(tdelay), and the number of correct models learned (nexact). We used the same
exact equivalence oracle in [8] to judge whether the learned automata were com-
pletely correct or not. The related parameters to run the experiments are as
follows. To generate test cases via Algorithm 1, we set parameters pstart = 0.4,
pvalid = 0.8, pstop = 0.05 and len = 2·|Q|, where |Q| is the number of locations of
models in each group, and sampled delay-time value at a granularity of 0.5 with
the upper bound 1.5·B. We obtain a test suite T with size |T| = 30·|QH|·|ΣH|·B
by repeatedly calling Algorithm 1, where |QH| and |ΣH| are the number of loca-
tions and actions of the current hypothesis H respectively. In the mutation gener-
ation, for the timed mutation operator, we set the slicing step w to the minimal
duration of the constraints of the models1. While for split-location mutation
1 Set w = 1 if no additional information is known.

https://github.com/Anna9697/mut_learn_DOTAs
https://github.com/Anna9697/mut_learn_DOTAs

244 X. Tang et al.

Table 1. Experimental results of case studies.

Case ID Mutation new Mutants checking Heuristic random testing

#tests #actions tdelay nexact #tests #actions tdelay nexact #tests #actions tdelay nexact

6 2 10-1 443.1 2592.1 9012.3 15 2640.2 9295.9 28774.7 15 3372.0 14405.0 46005.1 15

6 2 10-2 559.9 3254.1 15934.2 15 3004.6 9141.6 36273.7 15 4204.3 20711.0 97402.2 15

6 2 10-3 967.1 6218.8 21540.9 15 9389.0 32769.5 94801.4 15 5640.5 34557.3 132976.6 12

6 2 20-1 1085.8 7475.5 41588.0 15 11616.6 42426.0 171239.0 15 6957.6 36032.3 206737.9 15

6 2 20-2 614.4 3669.9 21300.3 15 3572.5 13607.7 58794.7 15 6885.5 33562.3 181704.7 15

6 2 20-3 1428.3 8817.3 59688.2 15 12931.5 40198.2 233110.7 15 9529.8 53712.3 387141.1 15

6 2 30-1 859.6 6626.6 54486.0 15 4244.8 13544.9 100506.4 15 9238.7 61385.1 729274.2 15

6 2 30-2 2381.5 18481.1 181969.8 15 43635.6 155341.7 1236780.6 15 17205.5 112464.1 1346503.8 15

6 2 30-3 1321.1 7378.7 68047.2 15 9877.7 27839.6 259687.3 15 9600.3 41289.2 419800.6 15

6 4 10-1 1003.0 7129.3 24928.0 15 7582.0 19563.7 57116.9 15 6430.1 27362.5 90757.6 15

6 4 10-2 797.5 5618.1 15934.7 15 8857.2 24367.8 65591.0 15 6042.5 30837.7 103849.5 15

6 4 10-3 805.9 5299.8 18883.0 15 9668.0 27604.1 60054.4 15 6605.8 33476.7 124421.4 15

6 6 10-1 1052.0 5822.4 19984.1 15 13569.4 31987.9 70455.2 15 9058.4 40925.5 125318.0 15

6 6 10-2 956.8 5965.6 29055.3 15 16273.2 39944.4 151809.1 15 11260.3 50044.5 193209.0 15

6 6 10-3 1243.9 7204.4 25286.5 15 11422.4 25626.3 68280.0 15 9161.1 43958.1 166033.1 15

10 2 10-1 883.7 8550.7 24911.4 15 13000.7 61353.5 105297.1 15 5168.2 39441.7 128707.0 15

10 2 10-2 1512.5 12905.2 38655.8 15 5826.2 26173.5 50920.1 15 7016.8 50663.2 177461.2 15

10 2 10-3 1398.5 12173.1 49605.8 15 22901.7 96580.9 265156.0 15 8166.5 63442.1 253596.7 15

5 5 10-Lamp 568.3 3396.8 18240.8 15 3076.3 8113.6 31719.7 15 11776.9 51956.6 287967.0 15

4 7 10-Coffee 766.3 3585.8 12264.1 15 6329.7 13279.9 33141.1 15 7374.7 35100.8 126433.5 15

11 10 10-TCP 4525.6 26779.9 87720.3 15 160482.1 480235.5 841312.0 15 36427.1 206505.9 483336.1 15

operator, we set nacc = 8 and k = 1. In the mutation-based selection of test
cases, we set the weights with a = 0.4, b = 0.4, c = 0.6, and d = 0.2 to calculate
the scores.

We refer to our mutation-based testing for DOTAs learning as Mutation
new. We also set two baseline methods, Mutants checking and Heuristic ra-
ndom testing. In the former, we first generate mutants using the method in
Sect. 4 and then generate test cases by equivalence checking between the current
hypothesis and each mutant as introduced in [23]. Hence, a test case is a timed
word showing the violation of equivalence. In the latter, we directly use the test
cases T generated by repeating Algorithm 1 without any mutation or selection.
We compare our technique with the two baseline methods. To ensure the compa-
rability of the different techniques, the parameter settings are the same as those
mentioned previously.

The experimental results of the three methods are given in Table 1. It shows
that the three methods can learn the correct model in all cases except for one fail-
ure for Heuristic random testing on model 6 2 10-3. Our method takes the
least number of test cases, actions, and accumulated delay time on all cases,
beating the two baseline methods by about an order of magnitude. Among
the baseline methods, Mutants checking costs less on average than Heuris-
tic random testing, but the comparison is highly variable across cases. In
order to evaluate the quality of the incorrect learned model for 6 2 10-3, we ran-
domly generated extra 50000 test cases to test the learned model. The passing
rate is 99.27%. Additionally, we analyze why Heuristic random testing failed
once but Mutation new did not. As we know, for an EQ, Tsel is a subset of T.

Learning Deterministic One-Clock Timed Automata via Mutation Testing 245

Fig. 2. Experimental results of the evaluation of improvements.

The found counterexamples for an EQ may be different using two methods, thus
leading to different hypotheses which will affect the learning process further.

5.2 Evaluation of Improvements

We continue to use the cases in Table 1 to evaluate the improvements of the
three main contributions in the context of learning: heuristic test-case generation
method, two special mutation operators, and score-based test-case selection. The
following three experiments are conducted:

E1. Comparison of the heuristic test-case generation and the baseline.
E2. Comparison of the algorithm with and without the two mutation operators.
E3. Comparison of the mutation and score-based test-case selection, the greedy

test-case selection, and without selection.

E1. Evaluation of the Heuristic Test-Case Generation. The quality of the test
cases T obtained using heuristic test-case generation is critical, as the test cases
we execute on the system are selected from T. In order to evaluate our heuris-
tic test-case generation method, we compare it with a purely random method
(randomly select actions and delay times to form timed traces) and the A&T’s
method (another random testing approach discussed in [6]). In other words, in

246 X. Tang et al.

the whole testing process, the experiments conducted only differ in the test-case
generation method. For A&T’s method, we set values to the parameters in the
method as pretry = 0.9, pstop = 0.05, linfix = |Q|/2, and maxSteps = 2 · |Q|. For
each case, the original test suites generated by the three methods are of the same
size. Still, for each case, we learn the models 15 times respectively using each
method and observe the times of the correct models are learned. The results are
shown in Fig. 2(a). It can be found that our heuristic method performs much
better than the other two methods on learning out correct models.

E2. Evaluation of the Two Mutation Operators. As described in Sect. 3.1, during
the process of mutation-based testing for DOTAs, we design and adopt two
kinds of mutation operators to generate mutants: timed mutation operator and
split-location mutation operator. We would like to evaluate the efficiency of the
two operators. For each case, we learn the models 15 times respectively using
only the timed mutation operator, or only the split-location operator, or both to
generate mutants, and observe the times of the correct models are learned. The
results, given in Fig. 2(b), shows that although for some cases we are able to learn
correct models 15 times using a single mutation operator, using two operators
together gives a significant improvement on the rate of learning correct models.
Therefore, it is necessary to use both operators in mutation-based testing in the
context of DOTAs learning.

E3. Evaluation of the Mutation and Score-Based Test-Case Selection. Our
mutation-score-based test-case selection algorithm considers various attributes
and guarantees mutation coverage at the same time. We compared the method
with a greedy test-case selection method [6] which only guarantees that the test
suite selected provides maximum coverage of the mutants. The experiments are
conducted differently only in the selection of test cases. Running all cases with-
out any test-case selection procedure is as the baseline. We run each experiment
for 15 times on each case and the results are shown in Fig. 2(c). Considering the
number of times the correct model is learned, both selection methods performed
better than the baseline (this is because the found counterexamples for an EQ
are different by different methods, which lead to different hypotheses and will
affect the learning process further). On most cases, our selection approach has
the least accumulated delay time except for case 6 6 10-3 and case 11 10 10-
TCP. However, for these two cases, we can still achieve better results than the
greedy test-case selection method by adjusting parameters.

6 Conclusion

We presented a conformance testing approach combining random testing and
model-based mutation testing, which can be used for EQs in the active learning
of DOTAs. The experimental results show the effectiveness and efficiency of our
two learning-friendly mutation operators and several heuristics in the generation
and selection of test cases. Since the performance depends on the instantiation
of parameters and we set parameters according to our experience, one possible

Learning Deterministic One-Clock Timed Automata via Mutation Testing 247

future work is to determine automatic methods for setting or online adaption of
parameters according to the learning scenarios.

References

1. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F., Verwer, S.: Improving active
Mealy machine learning for protocol conformance testing. Mach. Learn. 96, 189–
224 (2013). https://doi.org/10.1007/s10994-013-5405-0

2. Aichernig, B.K., et al.: Model-based mutation testing of an industrial measurement
device. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09099-3 1

3. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Softw. Test. Verification Reliab. 25(8),
716–748 (2015). https://doi.org/10.1002/stvr.1522

4. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants—model-based muta-
tion testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013.
LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38916-0 2

5. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 1

6. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation test-
ing. J. Autom. Reason. 63(4), 1103–1134 (2018). https://doi.org/10.1007/s10817-
018-9486-0

7. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

8. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 25

9. An, J., Wang, L., Zhan, B., Zhan, N., Zhang, M.: Learning real-time automata.
Sci. China Inf. Sci. 64(9), 1–17 (2021). https://doi.org/10.1007/s11432-019-2767-
4

10. An, J., Zhan, B., Zhan, N., Zhang, M.: Learning nondeterministic real-time
automata. ACM Trans. Embed. Comput. Syst. 20(5s), 1–26 (2021). https://doi.
org/10.1145/3477030

11. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis
for assessing and comparing testing coverage criteria. IEEE Trans. Software Eng.
32(8), 608–624 (2006). https://doi.org/10.1109/TSE.2006.83

12. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

13. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

14. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 3, 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

15. En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-method: Testing real-time
systems. IEEE Trans. Software Eng. 28(11), 1023–1038 (2002). https://doi.org/
10.1109/TSE.2002.1049402

https://doi.org/10.1007/s10994-013-5405-0
https://doi.org/10.1007/978-3-319-09099-3_1
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/s11432-019-2767-4
https://doi.org/10.1007/s11432-019-2767-4
https://doi.org/10.1145/3477030
https://doi.org/10.1145/3477030
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-540-31984-9_14
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.2002.1049402
https://doi.org/10.1109/TSE.2002.1049402

248 X. Tang et al.

16. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theoret. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.
2010.07.008

17. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unob-
servable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol.
12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57628-8 9

18. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Comput-
ing and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-91908-9 26

19. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16558-0 55

20. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

21. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011). https://doi.org/10.
1109/TSE.2010.62

22. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods Syst. Des. 34(3), 238–304 (2009). https://doi.org/10.1007/s10703-009-0065-1

23. Larsen, K.G., Lorber, F., Nielsen, B., Nyman, U.: Mutation-based test-case gener-
ation with Ecdar. In: ICST Workshops 2017, pp. 319–328. IEEE (2017). https://
doi.org/10.1109/ICSTW.2017.60

24. Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 41

25. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225

26. Trab, M.S.A., Counsell, S., Hierons, R.M.: Specification mutation analysis for val-
idating timed testing approaches based on timed automata. In: COMPSAC 2012,
pp. 660–669. IEEE Computer Society (2012). https://doi.org/10.1109/COMPSAC.
2012.93

27. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012). https://doi.
org/10.1002/stvr.456

28. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://doi.
org/10.1145/2967606

29. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning mealy machines with one timer.
In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021.
LNCS, vol. 12638, pp. 157–170. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-68195-1 13

30. Van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and seman-
tics of timed Chi. J. Symb. Comput. JSC (2005)

31. Vega, J.J.O., Perrouin, G., Amrani, M., Schobbens, P.: Model-based mutation
operators for timed systems: a taxonomy and research agenda. In: QRS 2018, pp.
325–332. IEEE (2018). https://doi.org/10.1109/QRS.2018.00045

https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1007/s10703-009-0065-1
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.1109/COMPSAC.2012.93
https://doi.org/10.1109/COMPSAC.2012.93
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1109/QRS.2018.00045

	Learning Deterministic One-Clock Timed Automata via Mutation Testing
	1 Introduction
	2 Preliminaries
	2.1 Deterministic One-Clock Timed Automata
	2.2 Active Learning Algorithm for DOTAs
	2.3 Model-Based Mutation Testing

	3 Mutation-Based Testing for DOTAs
	3.1 The Process Overview
	3.2 Heuristic Test-Case Generation
	3.3 Mutation and Score-Based Test-Case Selection

	4 Learning-Friendly Mutation Operators for DOTAs
	4.1 Timed Mutation Operator
	4.2 Split-Location Mutation Operator

	5 Implementation and Experiments
	5.1 Case Studies
	5.2 Evaluation of Improvements

	6 Conclusion
	References

