
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Online Causation Monitoring of
Signal Temporal Logic⋆

Zhenya Zhang1 , Jie An2 , Paolo Arcaini2 , and Ichiro Hasuo2

1 Kyushu University, Fukuoka, Japan
zhang@ait.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo, Japan
{jiean,arcaini,hasuo}@nii.ac.jp

Abstract. Online monitoring is an effective validation approach for hy-
brid systems, that, at runtime, checks whether the (partial) signals of a
system satisfy a specification in, e.g., Signal Temporal Logic (STL). The
classic STL monitoring is performed by computing a robustness interval
that specifies, at each instant, how far the monitored signals are from
violating and satisfying the specification. However, since a robustness in-
terval monotonically shrinks during monitoring, classic online monitors
may fail in reporting new violations or in precisely describing the system
evolution at the current instant. In this paper, we tackle these issues by
considering the causation of violation or satisfaction, instead of directly
using the robustness. We first introduce a Boolean causation monitor
that decides whether each instant is relevant to the violation or satisfac-
tion of the specification. We then extend this monitor to a quantitative
causation monitor that tells how far an instant is from being relevant
to the violation or satisfaction. We further show that classic monitors
can be derived from our proposed ones. Experimental results show that
the two proposed monitors are able to provide more detailed information
about system evolution, without requiring a significantly higher moni-
toring cost.

Keywords: online monitoring, Signal Temporal Logic, monotonicity

1 Introduction

Safety-critical systems require strong correctness guarantees. Due to the com-
plexity of these systems, offline verification may not be able to guarantee their
total correctness, as it is often very difficult to assess all possible system behav-
iors. To mitigate this issue, runtime verification [4,29,36] has been proposed as a

⋆ Z. Zhang is supported by JSPS KAKENHI Grant No. JP23K16865 and No.
JP23H03372. J. An, P. Arcaini, and I. Hasuo are supported by ERATO HASUO
Metamathematics for Systems Design Project (No. JPMJER1603), JST, Funding
Reference number 10.13039/501100009024 ERATO. P.Arcaini is also supported by
Engineerable AI Techniques for Practical Applications of High-Quality Machine
Learning-based Systems Project (Grant Number JPMJMI20B8), JST-Mirai.

https://doi.org/10.5281/zenodo.7923888
https://orcid.org/0000-0002-3854-9846
https://orcid.org/0000-0001-9260-9697
https://orcid.org/0000-0002-6253-4062
https://orcid.org/0000-0002-8300-4650

2 Z. Zhang, J. An, P. Arcaini, I. Hasuo

complementary technique that analyzes the system execution at runtime. Online
monitoring is such an approach that checks whether the system execution (e.g.,
given in terms of signals) satisfies or violates a system specification specified in
a temporal logic [28,34], e.g., Signal Temporal Logic (STL) [30].

Quantitative online monitoring is based on the STL robust semantics [17,21]
that not only tells whether a signal satisfies or violates a specification φ (i.e., the
classic Boolean satisfaction relation), but also assigns a value in R ∪ {∞,−∞}
(i.e., robustness) that indicates how robustly φ is satisfied or violated. However,
differently from offline assessment of STL formulas, an online monitor needs to
reason on partial signals and, so, the assessment of the robustness should be
adapted. We consider an established approach [12] employed by classic online
monitors (ClaM in the following). It consists in computing, instead of a single
robustness value, a robustness interval ; at each monitoring step, ClaM identifies
an upper bound [R]

U
telling the maximal reachable robustness of any possible

suffix signal (i.e., any continuation of the system evolution), and a lower bound

[R]
L
telling the minimal reachable robustness. If, at some instant, [R]

U
becomes

negative, the specification is violated; if [R]
L
becomes positive, the specification

is satisfied. In the other cases, the specification validity is unknown.

ClaM

Fig. 1: ClaM – Robustness upper and
lower bounds of of 2[0,100](v < 10)

Consider a simple example in Fig. 1.
It shows the monitoring of the speed of a
vehicle (in the upper plot); the specifica-
tion requires the speed to be always below
10. The lower plot reports how the up-
per bound [R]

U
and the lower bound [R]

L

of the reachable robustness change over
time. We observe that the initial value of
[R]

U
is around 8 and gradually decreases.3

The monitor allows to detect that the
specification is violated at time b = 20
when the speed becomes higher than 10,

and therefore [R]
U

goes below 0. After

that, the violation severity progressively gets worse till time b = 30, when [R]
U

becomes −5. After that point, the monitor does not provide any additional useful
information about the system evolution, as [R]

U
remains stuck at −5. However,

if we observe the signal of the speed after b = 30, we notice that (i) the severity
of the violation is mitigated, and the “1st violation episode” ends at time b = 35;
however, the monitor ClaM does not report this type of information; (ii) a “2nd
violation episode” occurs in the time interval [40, 45]; the monitor ClaM does not
distinguish the new violation.

The reason for the issues reported in the example is that the upper and
lower bounds are monotonically decreasing and increasing; this has the conse-
quence that the robustness interval at a given step is “masked” by the history

3 The value of lower bound [R]L is not shown in the figure, as not relevant. In the
example, it remains constant before b = 100, and the value is usually set either
according to domain knowledge about system signals, or to −∞ otherwise.

Online Causation Monitoring of STL 3

of previous robustness intervals, and, e.g., it is not possible to detect mitigation
of the violation severity. Moreover, as an extreme consequence, as soon as the
monitor ClaM assesses the violation of the specification (i.e., the upper bound

[R]
U
becomes negative), or its satisfaction (i.e., the lower bound [R]

L
becomes

positive), the Boolean status of the monitor does not change anymore. Such
characteristic directly derives from the STL semantics and it is known as the
monotonicity [9–11] of classic online monitors. Monotonicity has been recognized
as a problem of these monitors in the literature [10,37,40], since it does not allow
to detect specific types of information that are “masked”. We informally define
two types of information masking that can occur because of monotonicity:

evolution masking : the monitor may not properly report the evolution of the
system execution, e.g., mitigation of violation severity may not be detected;

violation masking : as a special case of evolution masking, the first violation
episode during the system execution “masks” the following ones.

The information not reported by ClaM because of information masking, is
very useful in several contexts. First of all, in some systems, the first violation of
the specification does not mean that the system is not operating anymore, and
one may want to continue monitoring and detect all the succeeding violations;
this is the case, e.g., of the monitoring approach reported by Selyunin et al. [37] in
which all the violations of the SENT protocol must be detected. Moreover, having
a precise description of the system evolution is important for the usefulness of
the monitoring; for example, the monitoring of the speed in Fig. 1 could be used
in a vehicle for checking the speed and notifying the driver whenever the speed
is approaching the critical limit; if the monitor is not able to precisely capture
the severity of violation, it cannot be used for this type of application.

Some works [10,37,40] try to mitigate the monotonicity issues, by “resetting”
the monitor at specific points. A recent approach has been proposed by Zhang
et al. [40] (called ResM in the following) that is able to identify each “violation
episode” (i.e., it solves the problem of violation masking), but does not solve the
evolution masking problem. For the example in Fig. 1, ResM is able to detect
the two violation episodes in intervals [20, 35] and [40, 45], but it is not able to
report that the speed decreases after b = 10 (in a non-violating situation), and
that the severity of the violation is mitigated after b = 30.

Contribution. In this paper, in order to provide more information about the
evolution of the monitored system, we propose to monitor the causation of viola-
tion or satisfaction, instead of considering the robustness directly. To do this, we
rely on the notion of epoch [5]. At each instant, the violation (satisfaction) epoch
identifies the time instants at which the evaluation of the atomic propositions of
the specification φ causes the violation (satisfaction) of φ.

Based on the notion of epoch, we define a Boolean causation monitor (called
BCauM) that, at runtime, not only assesses the specification violation/satisfaction,
but also tells whether each instant is relevant to it. Namely, BCauM marks each
current instant b as (i) a violation causation instant, if b is added to the violation
epoch; (ii) a satisfaction causation instant, if b is added to the satisfaction epoch;
(iii) an irrelevant instant, if b is not added to any epoch. We show that BCauM is

4 Z. Zhang, J. An, P. Arcaini, I. Hasuo

able to detect all the violation episodes (so solving the violation masking issue),
as violation causation instants can be followed by irrelevant instants. Moreover,
we show that the information provided by the classic Boolean online monitor
can be derived from that of the Boolean causation monitor BCauM.

However, BCauM just tells us whether the current instant is a (violation or
satisfaction) causation instant or not, but does not report how far the instant is
from being a causation instant. To this aim, we introduce the notion of causation
distance, as a quantitative measure characterizing the spatial distance of the
signal value at b from turning b into a causation instant. Then, we propose
the quantitative causation monitor (QCauM) that, at each instant, returns its
causation distance. We show that using QCauM, besides solving the violation
masking problem, we also solve the evolution masking problem. Moreover, we
show that we can derive from QCauM both the classic quantitative monitor ClaM,
and the Boolean causation monitor BCauM.

Experimental results show that the proposed monitors, not only provide more
information, by they do it in an efficient way, not requiring a significant addi-
tional monitoring time w.r.t. the existing monitors.

Outline. §2 reports necessary background. We introduce BCauM in §3, and QCauM

in §4. Experimental assessment of the two proposed monitors is reported in §5.
Finally, §6 discusses some related work, and §7 concludes the paper.

2 Preliminaries

In this section, we review the fundamentals of signal temporal logic (STL) in
§2.1, and then introduce the existing classic online monitoring approach in §2.2.

2.1 Signal Temporal Logic

Let T ∈ R+ be a positive real, and d ∈ N+ be a positive integer. A d-dimensional
signal is a function v : [0, T] → Rd , where T is called the time horizon of v.
Given an arbitrary time instant t ∈ [0, T], v(t) is a d -dimensional real vector;
each dimension concerns a signal variable that has a certain physical meaning,
e.g., speed, RPM, acceleration, etc. In this paper, we fix a set Var of variables
and assume that a signal v is spatially bounded, i.e., for all t ∈ [0, T], v(t) ∈ Ω,
where Ω is a d -dimensional hyper-rectangle.

Signal temporal logic (STL) is a widely-adopted specification language, used
to describe the expected behavior of systems. In Def. 1 and Def. 2, we respectively
review the syntax and the robust semantics of STL [17,21,30].

Definition 1 (STL syntax). In STL, the atomic propositions α and the for-
mulas φ are defined as follows:

α ::≡ f(w1, . . . , wK) > 0 φ ::≡ α | ⊥ | ¬φ | φ ∧ φ | 2Iφ | 3Iφ | φ UI φ

Here f is a K-ary function f : RK → R, w1, . . . , wK ∈ Var, and I is a closed
interval over R≥0, i.e., I = [l, u], where l, u ∈ R and l ≤ u. In the case that

Online Causation Monitoring of STL 5

l = u, we can use l to stand for I. 2,3 and U are temporal operators, which
are known as always, eventually and until, respectively. The always operator 2
and eventually operator 3 are two special cases of the until operator U , where
3Iφ ≡ ⊤UI φ and 2Iφ ≡ ¬3I¬φ. Other common connectives such as ∨,→ are
introduced as syntactic sugar: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), φ1 → φ2 ≡ ¬φ1 ∨ φ2.

Definition 2 (STL robust semantics). Let v be a signal, φ be an STL for-
mula and τ ∈ R+ be an instant. The robustness R(v, φ, τ) ∈ R ∪ {∞,−∞} of v
w.r.t. φ at τ is defined by induction on the construction of formulas, as follows.

R(v, α, τ) := f(v(τ)) R(v,⊥, τ) := −∞ R(v,¬φ, τ) := −R(v, φ, τ)
R(v, φ1 ∧ φ2, τ) := min (R(v, φ1, τ),R(v, φ2, τ))

R(v,2Iφ, τ) := inf
t∈τ+I

R(v, φ, t) R(v,3Iφ, τ) := sup
t∈τ+I

R(v, φ, t)

R(v, φ1 UI φ2, τ) := sup
t∈τ+I

min

(
R(v, φ2, t), inf

t′∈[τ,t)
R(v, φ1, t

′)

)
Here, τ + I denotes the interval [l + τ, u+ τ].

The original STL semantics is Boolean, which represents whether a signal v
satisfies φ at an instant τ , i.e., whether (v, τ) |= φ. The robust semantics in Def. 2
is a quantitative extension that refines the original Boolean STL semantics, in
the sense that, R(v, φ, τ) > 0 implies (v, τ) |= φ, and R(v, φ, τ) < 0 implies
(v, τ) ̸|= φ. More details can be found in [21, Prop. 16].

2.2 Classic Online Monitoring of STL

STL robust semantics in Def. 2 provides an offline monitoring approach for
complete signals. Online monitoring, instead, targets a growing partial signal at
runtime. Besides the verdicts ⊤ and ⊥, an online monitor can also report the
verdict unknown (denoted as ?), which represents a status when the satisfaction
of the signal to φ is not decided yet. In the following, we formally define partial
signals and introduce online monitors for STL.

Let T be the time horizon of a signal v, and let [a, b] ⊆ [0, T] be a sub-
interval in the time domain [0, T]. A partial signal va:b is a function which is
only defined in the interval [a, b]; in the remaining domain [0, T]\[a, b], we denote
that va:b = ϵ, where ϵ stands for a value that is not defined.

Specifically, if a = 0 and b ∈ (a, T], a partial signal va:b is called a prefix
(partial) signal; dually, if b = T and a ∈ [0, b), a partial signal va:b is called a
suffix (partial) signal. Given a prefix signal v0:b, a completion v0:b · vb:T of v0:b

is defined as the concatenation of v0:b with a suffix signal vb:T .

Definition 3 (Classic Boolean STL online monitor). Let v0:b be a prefix
signal, and φ be an STL formula. An online monitor M(v0:b, φ, τ) returns a

6 Z. Zhang, J. An, P. Arcaini, I. Hasuo

verdict in {⊤,⊥, ?} (namely, true, false, and unknown), as follows:

M(v0:b, φ, τ) :=

⊤ if ∀vb:T .R(v0:b · vb:T , φ, τ) > 0

⊥ if ∀vb:T .R(v0:b · vb:T , φ, τ) < 0

? otherwise

Namely, the verdicts of M(v0:b, φ, τ) are interpreted as follows:
– if any possible completion v0:b · vb:T of v0:b satisfies φ, then v0:b satisfies φ;
– if any possible completion v0:b · vb:T of v0:b violates φ, then v0:b violates φ;
– otherwise (i.e., there is a completion v0:b · vb:T that satisfies φ, and there is

a completion v0:b ·vb:T that violates φ), then M(v0:b, φ, τ) reports unknown.

Note that, by Def. 3 only, we cannot synthesize a feasible online monitor,
because the possible completions for v0:b are infinitely many. A constructive
online monitor is introduced in [12], which implements the functionality of Def. 3
by computing the reachable robustness of v0:b. We review this monitor in Def. 4.

Definition 4 (Classic Quantitative STL online monitor (ClaM)). Let v0:b

be a prefix signal, and let φ be an STL formula. We denote by Rαmax and Rαmin the
possible maximum and minimum bounds of the robustness R(v, α, τ)4. Then, an
online monitor [R](v0:b, φ, τ), which returns a sub-interval of [Rαmin, R

α
max] at the

instant b, is defined as follows, by induction on the construction of formulas.

[R](v0:b, α, τ) :=

{[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b][

Rαmin, R
α
max

]
otherwise

[R](v0:b,¬φ, τ) := −[R](v0:b, φ, τ)

[R](v0:b, φ1 ∧ φ2, τ) := min
(
[R](v0:b, φ1, τ), [R](v0:b, φ2, τ)

)
[R](v0:b,2Iφ, τ) := inf

t∈τ+I

(
[R](v0:b, φ, t)

)
[R](v0:b, φ1 UI φ2, τ) := sup

t∈τ+I
min

(
[R](v0:b, φ2, t), inf

t′∈[τ,t)
[R](v0:b, φ1, t

′)
)

Here, f is defined as in Def. 1, and the arithmetic rules over intervals I = [l, u] are
defined as follows: −I := [−u,−l] and min(I1, I2) := [min(l1, l2),min(u1, u2)].

We denote by [R]
U
(v0:b, φ, τ) and [R]

L
(v0:b, φ, τ) the upper bound and the

lower bound of [R](v0:b, φ, τ) respectively. Intuitively, the two bounds together
form the reachable robustness interval of the completion v0:b · vb:T , under any
possible suffix signal vb:T . For instance, in Fig. 2, the upper bound [R]

U
at b = 20

is 0, which indicates that the robustness of the completion of the signal speed,
under any suffix, can never be larger than 0.

The quantitative online monitor ClaM in Def. 4 refines the Boolean one in
Def. 3, and the Boolean monitor can be derived from ClaM as follows:

4 R(v, α, τ) is bounded because v is bounded by Ω. In practice, if Ω is not know, we
set Rαmax and Rαmin to, respectively, ∞ and −∞.

Online Causation Monitoring of STL 7

– if [R]
L
(v0:b, φ, τ) > 0, it implies that M(v0:b, φ, τ) = ⊤;

– if [R]
U
(v0:b, φ, τ) < 0, it implies that M(v0:b, φ, τ) = ⊥;

– otherwise, if [R]
L
(v0:b, φ, τ) < 0 and [R]

U
(v0:b, φ, τ) > 0, M(v0:b, φ, τ) = ?.

The classic online monitors aremonotonic by definition. In the Boolean moni-
tor (Def. 3), with the growth of v0:b, M(v0:b, φ, τ) can only turn from ? to {⊥,⊤},
but never the other way around. In the quantitative one (Def. 4), as shown in

Lem. 1, [R]
U
(v0:b, φ, τ) and [R]

L
(v0:b, φ, τ) are both monotonic, the former one

decreasingly, the latter one increasingly. An example can be observed in Fig. 2.

Lemma 1 (Monotonicity of STL online monitor). Let [R](v0:b, φ, τ) be
the quantitative online monitor for a partial signal v0:b and an STL formula φ.
With the growth of the partial signal v0:b, the upper bound [R]

U
(v0:b, φ, τ) mono-

tonically decreases, and the lower bound [R]
L
(v0:b, φ, τ) monotonically increases,

i.e., for two time instants b1, b2 ∈ [0, T], if b1 < b2, we have (i) [R]
U
(v0:b1 , φ, τ) ≥

[R]
U
(v0:b2 , φ, τ), and (ii) [R]

L
(v0:b1 , φ, τ) ≤ [R]

L
(v0:b2 , φ, τ).

Proof. This can be proved by induction on the structures of STL formulas. The
detailed proof can be found in the full version [38]. ⊓⊔

3 Boolean Causation Online Monitor

As explained in §1, monotonicity of classic online monitors causes different types
of information masking, which prevents some information from being delivered.
In this section, we introduce a novel Boolean causation (online) monitor BCauM,
that solves the violation masking issue (see §1). BCauM is defined based on online
signal diagnostics [5, 40], which reports the cause of violation or satisfaction of
the specification at the atomic proposition level.

Definition 5 (Online signal diagnostics). Let v0:b be a partial signal and
φ be an STL specification. At an instant b, online signal diagnostics returns a
violation epoch E⊖(v0:b, φ, τ), under the condition [R]

U
(v0:b, φ, τ) < 0, as follows:

E⊖(v0:b, α, τ) :=

{
{⟨α, τ⟩} if [R]

U
(v0:b, α, τ) < 0

∅ otherwise

E⊖(v0:b,¬φ, τ) := E⊕(v0:b, φ, τ)

E⊖(v0:b, φ1 ∧ φ2, τ) :=
⋃

i∈{1,2} s.t.

[R]U(v0:b,φi,τ)<0

E⊖(v0:b, φi, τ)

E⊖(v0:b,2Iφ, τ) :=
⋃

t∈τ+I s.t.

[R]U(v0:b,φ,t)<0

E⊖(v0:b, φ, t)

E⊖(v0:b, φ1 UI φ2, τ) :=
⋃

t∈τ+I s.t.

[R]U(v0:b,φ1Utφ2,τ)<0

E⊖(v0:b, φ2, t) ∪
⋃

t′∈[τ,t)

E⊖(v0:b, φ1, t
′)

8 Z. Zhang, J. An, P. Arcaini, I. Hasuo

and a satisfaction epoch E⊕(v0:b, φ, τ), under the condition [R]
L
(v0:b, φ, τ) > 0,

as follows:

E⊕(v0:b, α, τ) :=

{
{⟨α, τ⟩} if [R]

L
(v0:b, α, τ) > 0

∅ otherwise

E⊕(v0:b,¬φ, τ) := E⊖(v0:b, φ, τ)

E⊕(v0:b, φ1 ∧ φ2, τ) :=
⋃

i∈{1,2} s.t.

[R]L(v0:b,φi,τ)>0

E⊕(v0:b, φi, τ)

E⊕(v0:b,2Iφ, τ) :=
⋃

t∈τ+I s.t.

[R]L(v0:b,φ,t)>0

E⊕(v0:b, φ, t)

E⊕(v0:b, φ1 UI φ2, τ) :=
⋃

t∈τ+I s.t.

[R]L(v0:b,φ1Utφ2,τ)>0

E⊕(v0:b, φ2, t) ∪
⋃

t′∈[τ,t)

E⊕(v0:b, φ1, t
′)

If the conditions are not satisfied, E⊖(v0:b, φ, τ) and E⊕(v0:b, φ, τ) are both ∅.
Note that the definition is recursive, thus the conditions should also be checked
for computing the violation and satisfaction epochs of the sub-formulas of φ.

Computation for other operators can be inferred by the presented ones and
the STL syntax (Def. 1).

Intuitively, when a partial signal v0:b violates a specification φ, a violation
epoch starts collecting the evaluations (identified by pairs of atomic propositions
and instants) of the signal at the atomic proposition level, that cause the viola-
tion of the whole formula φ (which also applies to the satisfaction cases in a dual
manner). This is done inductively, based on the semantics of different operators:
– in the case of an atomic proposition α, if α is violated at τ , it collects ⟨α, τ⟩;
– in the case of a negation ¬φ, it collects the satisfaction epoch of φ;
– in the case of a conjunction φ1 ∧ φ2, it collects the union of the violation

epochs of the sub-formulas violated by the partial signal;
– in the case of an always operator 2Iφ, it collects the epochs of the sub-

formula φ at all the instants t where φ is evaluated as being violated.
– in the case of an until operator φ1 UI φ2, it collects the epochs of the sub-

formula φ2 at all the instants t and the epochs of φ1 at the instants t
′ ∈ [τ, t),

in the case where the clause “φ1 until φ2” is violated at t.

Example 1. The example in Fig. 2 illustrates how an epoch is collected. The
specification requires that whenever the speed is higher than 10, the car should
decelerate within 5 time units. As shown by the classic monitor, the specification
is violated at b = 25, since v becomes higher than 10 at 20 but a remains positive
during [20, 25]. Note that the specification can be rewritten as φ ≡ 2[0,100](¬(v >
10) ∨3[0,5](a < 0)). For convenience, we name the sub-formulas of φ as follows:

φ′ ≡ ¬(v > 10) ∨3[0,5](a < 0) φ1 ≡ ¬(v > 10) φ2 ≡ 3[0,5](a < 0)

Online Causation Monitoring of STL 9

v (speed)

10

5 10 15 20 25 30 35

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

15

b
-5

6
3

classic quantitative online monitor ClaM

b

10

5 10 15 20 25 30 35

-10

5 10 15 20 25 30 35
?

classic Boolean online monitor

b

13

Fig. 2: Classic monitor (ClaM)
result for the STL specification:
2[0,100](v > 10 → 3[0,5](a < 0))

5 10 15 20 25 30 35

v (speed)

10

5 10 15 20 25 30

a (acceleration)

0

5 10 15 20 25 30

Boolean causation monitor

-10

b (time)

b

b

v (speed)

10

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

b

⊘

5 10 15 20 25 30 35

b=30 b=35

The violation epochs (red parts) when b=30 and b=35

⊖

⊕

Fig. 3: The violation epochs (the red parts) re-
spectively when b = 30 and b = 35

5 10 15 20 25 30 35

v (speed)

10

5 10 15 20 25 30

a (acceleration)

0

5 10 15 20 25 30

Boolean causation monitor BCauM

-10

b (time)

b

b

v (speed)

10

a (acceleration)

0

5 10 15 20 25 30 35
-10

b

b

⊘

5 10 15 20 25 30 35

b=30 b=35

The violation epochs (red parts) when b=30 and b=35

⊖

⊕

Fig. 4: Boolean causation monitor (BCauM) result

α1 ≡ v > 10 α2 ≡ a < 0

Fig. 3 shows the violation epochs at two instants 30 and 35. First, at b = 30,

E⊖(v0:30, φ, 0) =
(⋃

t∈[20,25] E
⊕(v0:30, α1, t)

)
∪
(⋃

t∈[20,30] E
⊖(v0:30, α2, t)

)
= ⟨α1, [20, 25]⟩ ∪ ⟨α2, [20, 30]⟩

Similarly, the violation epoch E⊖(v0:35, φ, 0) at b = 35 is the same as that at
b = 30. Intuitively, the epoch at b = 30 shows the cause of the violation of v0:30;
then since signal a < 0 in [30, 35], this segment is not considered as the cause of
the violation, so the epoch remains the same at b = 35. �

Definition 6 (Boolean causation monitor (BCauM)). Let v0:b be a partial
signal and φ be an STL specification. We denote by A the set of atomic propo-
sitions of φ. At each instant b, a Boolean causation (online) monitor BCauM

returns a verdict in {⊖,⊕,⊘} (called violation causation, satisfaction causation
and irrelevant), which is defined as follows,

M (v0:b, φ, τ) :=

⊖ if ∃α ∈ A. ⟨α, b⟩ ∈ E⊖(v0:b, φ, τ)

⊕ if ∃α ∈ A. ⟨α, b⟩ ∈ E⊕(v0:b, φ, τ)

⊘ otherwise

An instant b is called a violation/satisfaction causation instant if M (v0:b, φ, τ)
returns ⊖/⊕, or an irrelevant instant if M (v0:b, φ, τ) returns ⊘.

Intuitively, if the current instant b (with the related α) is included in the
epoch (thus the signal value at b is relevant to the violation/satisfaction of φ),

10 Z. Zhang, J. An, P. Arcaini, I. Hasuo

BCauM will report a violation/satisfaction causation (⊖/⊕); otherwise, it will
report irrelevant (⊘). Notably BCauM is non-monotonic, in that even if it reports
⊖ or ⊕ at some instant b, it may still report ⊘ after b. This feature allows BCauM
to bring more information, e.g., it can detect the end of a violation episode and
the start of a new one (i.e., it solves the violation masking issue in §1); see Ex. 2.

Example 2. Based on the signal diagnostics in Fig. 3, the Boolean causation
monitor BCauM reports the result shown as in Fig. 4.

Compared to the classic Boolean monitor in Fig. 2, BCauM brings more infor-
mation, in the sense that it detects the end of the violation episode at b = 30,
by going from ⊖ to ⊘, when the signal a becomes negative. �

Thm. 1 states the relation of BCauM with the classic Boolean online monitor.

Theorem 1. The Boolean causation monitor BCauM in Def. 6 refines the classic
Boolean online monitor in Def. 3, in the following sense:
– M(v0:b, φ, τ) = ⊥ iff.

∨
t∈[0,b] (M (v0:t, φ, τ) = ⊖)

– M(v0:b, φ, τ) = ⊤ iff.
∨

t∈[0,b] (M (v0:t, φ, τ) = ⊕)
– M(v0:b, φ, τ) = ? iff.

∧
t∈[0,b] (M (v0:t, φ, τ) = ⊘)

Proof. The proof is based on Defs. 5 and 6, Lem. 1 about the monotonicity of
classic STL online monitors, and two extra lemmas in the full version [38]. ⊓⊔

4 Quantitative Causation Online Monitor

Although BCauM in §3 is able to solve the violation masking issue, it still does
not provide enough information about the evolution of the system signals, i.e., it
does not solve the evolution masking issue introduced in §1. To tackle this issue,
we propose a quantitative (online) causation monitor QCauM in Def. 7, which
is a quantitative extension of BCauM. Given a partial signal v0:b, QCauM reports
a violation causation distance [R]

⊖
(v0:b, φ, τ) and a satisfaction causation dis-

tance [R]
⊕
(v0:b, φ, τ), which, respectively, indicate how far the signal value at

the current instant b is from turning b into a violation causation instant and
from turning b into a satisfaction causation instant.

Definition 7 (Quantitative causation monitor (QCauM)). Let v0:b be a par-
tial signal, and φ be an STL specification. At instant b, the quantitative causation
monitor QCauM returns a violation causation distance [R]

⊖
(v0:b, φ, τ), as follows:

[R]
⊖
(v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rαmax otherwise

[R]
⊖
(v0:b,¬φ, τ) := −[R]

⊕
(v0:b, φ, τ)

[R]
⊖
(v0:b, φ1 ∧ φ2, τ) := min

(
[R]

⊖
(v0:b, φ1, τ) , [R]

⊖
(v0:b, φ2, τ)

)
[R]

⊖
(v0:b, φ1 ∨ φ2, τ) := min

max
(
[R]

⊖
(v0:b, φ1, τ) , [R]

U
(v0:b, φ2, τ)

)
,

max
(
[R]

U
(v0:b, φ1, τ), [R]

⊖
(v0:b, φ2, τ)

)

Online Causation Monitoring of STL 11

[R]
⊖
(v0:b,2Iφ, τ) := inf

t∈τ+I

(
[R]

⊖
(v0:b, φ, t)

)
[R]

⊖
(v0:b,3Iφ, τ) := inf

t∈τ+I

(
max

(
[R]

⊖
(v0:b, φ, t) , [R]

U
(v0:b,3Iφ, τ)

))

[R]
⊖
(v0:b, φ1 UI φ2, τ) := inf

t∈τ+I

max

min

(
inf

t′∈[τ,t)
[R]

⊖
(v0:b, φ1, t

′)

[R]
⊖
(v0:b, φ2, t)

)
[R]

U
(v0:b, φ1 UI φ2, τ)

and a satisfaction causation distance [R]
⊕
(v0:b, φ, τ), as follows:

[R]
⊕
(v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rαmin otherwise

[R]
⊕
(v0:b,¬φ, τ) := −[R]

⊖
(v0:b, φ, τ)

[R]
⊕
(v0:b, φ1 ∧ φ2, τ) := max

min
(
[R]

⊕
(v0:b, φ1, τ) , [R]

L
(v0:b, φ2, τ)

)
,

min
(
[R]

L
(v0:b, φ1, τ), [R]

⊕
(v0:b, φ2, τ)

)
[R]

⊕
(v0:b, φ1 ∨ φ2, τ) := max

(
[R]

⊕
(v0:b, φ1, τ) , [R]

⊕
(v0:b, φ2, τ)

)
[R]

⊕
(v0:b,2Iφ, τ) := sup

t∈τ+I

(
min

(
[R]

⊕
(v0:b, φ, t) , [R]

L
(v0:b,2Iφ, τ)

))
[R]

⊕
(v0:b,3Iφ, τ) := sup

t∈τ+I

(
[R]

⊕
(v0:b, φ, t)

)

[R]
⊕
(v0:b, φ1 UI φ2, τ) := sup

t∈τ+I

max

min

sup

t′∈[τ,t)

[R]
⊕
(v0:b, φ1, t

′)

inf
t′∈[τ,t)

[R]
L
(v0:b, φ1, t

′)

[R]
L
(v0:b, φ2, t)

min

(
inf

t′∈[τ,t)
[R]

L
(v0:b, φ1, t

′)

[R]
⊕
(v0:b, φ2, t)

)

Intuitively, a violation causation distance [R]

⊖
(v0:b, φ, τ) is the spatial distance

of the signal value v0:b(b), at the current instant b, from turning b into a violation
causation instant such that b is relevant to the violation of φ (also applied to
the satisfaction case dually). It is computed inductively on the structure of φ:
– Case atomic propositions α: if b = τ (i.e., at which instant α should be

evaluated), then the distance of b from being a violation causation instant is
f(v0:b(b)); otherwise, if b ̸= τ , despite the value of f(v0:b(b)), b can never be
a violation causation instant, according to Def. 5, because only f(v0:b(τ)) is
relevant to the violation of α. Hence, the distance will be Rαmax;

– Case ¬φ: b is a violation causation instant for ¬φ if b is a satisfaction cau-
sation instant for φ, so [R]

⊖
(v0:b,¬φ, τ) depends on [R]

⊕
(v0:b, φ, τ);

– Case φ1 ∧φ2: b is a violation causation instant for φ1 ∧φ2 if b is a violation
causation instant for either φ1 or φ2, so [R]

⊖
(v0:b, φ1 ∧ φ2, τ) depends on

the minimum between [R]
⊖
(v0:b, φ1, τ) and [R]

⊖
(v0:b, φ2, τ);

12 Z. Zhang, J. An, P. Arcaini, I. Hasuo

QCauM

[R]�

[R]⊕

Fig. 5: Quantitative causation monitor (QCauM) result for Ex. 1

– Case φ1 ∨ φ2: b is a violation causation instant for φ1 ∨ φ2 if, first, φ1 ∨ φ2

has been violated at b, and second, b is the violation causation instant for
either φ1 or φ2. Hence, [R]

⊖
(v0:b, φ1 ∨ φ2, τ) depend on both the violation

status (measured by [R]
U
(v0:b, φi, τ)) of one sub-formula and the violation

causation distance of the other sub-formula;
– Case 2Iφ: b is a violation causation instant for 2Iφ if b is the violation

causation instant for the sub-formula φ evaluated at any instant in τ + I.
So, [R]

⊖
(v0:b,2Iφ, τ) depends on the infimum of the violation causation

distances regarding φ evaluated at the instants in τ + I;
– Case 3Iφ: b is a violation causation instant for 3Iφ if, first, 3Iφ has been

violated at b, and second, b is a violation causation instant for the sub-
formula φ evaluated at any instant in τ + I. So, [R]

⊖
(v0:b,3Iφ, τ) depends

on both the violation status of 3Iφ (measured by [R]
U
(v0:b,3Iφ, τ)) and

the infimum of the violation causation distances of φ evaluated in τ + I.
– Case φ1 UI φ2: [R]

⊖
(v0:b, φ1 UI φ2, τ) depends on, first, the violation status

of the whole formula (measured by [R]
U
(v0:b, φ1 UI φ2, τ)), and also, the

infimum of the violation causation distances regarding the evaluation of “φ1

holds until φ2” at each instant in τ + I.

Similarly, we can also compute the satisfaction causation distance. We use Ex. 3
to illustrate the quantitative causation monitor for the signals in Ex. 1.

Example 3. Consider the quantitative causation monitor for the signals in
Ex. 1. At b = 30, the violation causation distance is computed as:

[R]⊖(v0:30,φ,0)= inf
t∈[0,100]

[R]⊖
(
v0:30,φ

′,t
)

= inf
t∈[0,100]

min

max
(
[R]⊖(v0:30,φ1,t),[R]U(v0:30,φ2,t)

)
,

max
(
[R]U(v0:30,φ1,t),[R]⊖(v0:30,φ2,t)

)

= inf
t∈[0,100]

min

max

(
−[R]⊕(v0:30,α1,t), sup

t′∈t+[0,5]

[R]U(v0:30,α2,t
′)

)

max

(
−[R]L(v0:30,α1,t),max

(
[R]U(v0:30,φ2,t),

inf
t′∈t+[0,5]

[R]⊖
(
v0:30,α2,t

′)))

=max

(
−[R]L(v0:30,α1,25),[R]U(v0:30,φ2,25), inf

t′∈[25,30]
[R]⊖

(
v0:30,α2,t

′))
=max(−3,−3,−5)=−3.

Online Causation Monitoring of STL 13

Similarly, at b = 35, the violation causation distance [R]
⊖
(v0:35, φ, 0) = 5.

See the result of QCauM shown in Fig. 5. Compared to ClaM in Fig. 2, it is evident
that QCauM provides much more information about the system evolution, e.g.,
it can report that, in the interval [15, 20], the system satisfies the specification
“more”, as the speed decreases. �

By using the violation and satisfaction causation distances reported by QCauM

jointly, we can infer the verdict of BCauM, as indicated by Thm. 2.

Theorem 2. The quantitative causation monitor QCauM in Def. 7 refines the
Boolean causation monitor BCauM in Def. 6, in the sense that:
– if [R]

⊖
(v0:b, φ, τ) < 0, it implies M (v0:b, φ, τ) = ⊖;

– if [R]
⊕
(v0:b, φ, τ) > 0, it implies M (v0:b, φ, τ) = ⊕;

– if [R]
⊖
(v0:b, φ, τ) > 0 and [R]

⊕
(v0:b, φ, τ) < 0, it implies M (v0:b, φ, τ) = ⊘.

Proof. The proof is generally based on mathematical induction. First, by Def. 7
and Def. 5, it is straightforward that Thm. 2 holds for the atomic propositions.

Then, assuming that Thm. 2 holds for an arbitrary formula φ, we prove
that Thm. 2 also holds for the composite formula φ′ constructed by applying
STL operators to φ. The complete proof for all three cases is shown in the full
version [38].

As an instance, we show the proof for the first case with φ′ = φ1 ∨ φ2, i.e.,
we prove that [R]

⊖
(v0:b, φ1 ∨ φ2, τ) < 0 implies M (v0:b, φ1 ∨ φ2, τ) = ⊖.

[R]
⊖
(v0:b, φ1 ∨ φ2, τ) < 0

⇒max
(
[R]

⊖
(v0:b, φ1, τ) , [R]

U
(v0:b, φ2, τ)

)
< 0 (by Def. 7 and w.l.o.g.)

⇒[R]
⊖
(v0:b, φ1, τ) < 0 (by def. of max)

⇒M (v0:b, φ1, τ) = ⊖ (by assumption)

⇒E⊖(v0:b, φ1 ∨ φ2, τ) ⊇ E⊖(v0:b, φ1, τ) (by Def. 5 and Thm. 1)

⇒∃α. ⟨α, b⟩ ∈ E⊖(v0:b, φ1 ∨ φ2, τ) (by def. of ⊇)

⇒M (v0:b, φ1 ∨ φ2, τ) = ⊖ (by Def. 6) ⊓⊔

The relation between the quantitative causation monitor QCauM and the
Boolean causation monitor BCauM, disclosed by Thm. 2, can be visualized by
the comparison between Fig. 5 and Fig. 4. Indeed, when the violation causation
distance reported by QCauM is negative in Fig. 5, BCauM reports ⊖ in Fig. 4.

Next, we present Thm. 3, which states the relation between the quantitative
causation monitor QCauM and the classic quantitative monitor ClaM.

Theorem 3. The quantitative causation monitor QCauM in Def. 7 refines the
classic quantitative online monitor ClaM in Def. 4, in the sense that, the moni-
toring results of ClaM can be reconstructed from the results of QCauM, as follows:

[R]
U
(v0:b, φ, τ) = inf

t∈[0,b]
[R]

⊖
(v0:t, φ, τ) (1)

[R]
L
(v0:b, φ, τ) = sup

t∈[0,b]

[R]
⊕
(v0:t, φ, τ) (2)

14 Z. Zhang, J. An, P. Arcaini, I. Hasuo

Proof. The proof is generally based on mathematical induction. First, by Def. 7
and Def. 4, it is straightforward that Thm. 3 holds for the atomic propositions.

Then, we make the global assumption that Thm. 3 holds for an arbitrary
formula φ, i.e., both the two cases inft∈[0,b] [R]

⊖
(v0:t, φ, τ) = [R]

U
(v0:b, φ, τ)

and supt∈[0,b] [R]
⊕
(v0:t, φ, τ) = [R]

L
(v0:b, φ, τ) hold. Based on this assumption,

we prove that Thm. 3 also holds for the composite formula φ′ constructed by
applying STL operators to φ.

As an instance, we prove inft∈[0,b] [R]
⊖
(v0:t, φ

′, τ) = [R]
U
(v0:b, φ

′, τ) with
φ′ = φ1 ∨φ2 as follows. The complete proof is presented in the full version [38].
– First, if b = τ , it holds that:

inf
t∈[0,b]

[R]
⊖
(v0:t,φ1∨φ2,τ)=[R]

⊖
(v0:τ ,φ1∨φ2,τ)

=max
(
[R]

U
(v0:τ ,φ1,τ),[R]

U
(v0:τ ,φ2,τ)

)
(by Def. 7 and global assump.)

=[R]
U
(v0:b,φ1∨φ2,τ) (by Def. 4)

– Then, we make a local assumption that, given an arbitrary b, it holds that
inft∈[0,b] [R]

⊖
(v0:t, φ1 ∨ φ2, τ) = [R]

U
(v0:b, φ1 ∨φ2, τ). We prove that, for b′

which is the next sampling point to b, it holds that,

inf
t∈[0,b′]

[R]
⊖
(v0:t,φ1∨φ2,τ)

=min
(
[R]

U
(v0:b,φ1∨φ2,τ),[R]

⊖
(v0:b′ ,φ1∨φ2,τ)

)
(by local assump.)

=min

max

(
[R]

U
(v0:b,φ1,τ),[R]

U
(v0:b,φ2,τ)

)
,

max
(
[R]

⊖
(v0:b′ ,φ1,τ),[R]

U
(v0:b′ ,φ2,τ)

)
,

max
(
[R]

U
(v0:b′ ,φ1,τ),[R]

⊖
(v0:b′ ,φ2,τ)

)
 (by Defs. 4 & 7)

=min

max

(
[R]

U
(v0:b,φ1,τ),[R]

U
(v0:b,φ2,τ)

)
,

max
(
[R]

⊖
(v0:b′ ,φ1,τ),[R]

U
(v0:b,φ2,τ)

)
,

max
(
[R]

U
(v0:b,φ1,τ),[R]

⊖
(v0:b′ ,φ2,τ)

)
,

max
(
[R]

⊖
(v0:b′ ,φ1,τ),[R]

⊖
(v0:b′ ,φ2,τ)

)

 (by global assump.)

=max

min
(
[R]

U
(v0:b,φ1,τ),[R]

⊖
(v0:b′ ,φ1,τ)

)
,

min
(
[R]

U
(v0:b,φ2,τ),[R]

⊖
(v0:b′ ,φ2,τ)

) (by def. of min, max)

=max
(
[R]

U
(v0:b′ ,φ1,τ),[R]

U
(v0:b′ ,φ2,τ)

)
(by global assump.)

=[R]
U
(v0:b′ ,φ1∨φ2,τ) (by Def. 4) ⊓⊔

Thm. 3 shows that the result [R]
U
(v0:b, φ, τ) of ClaM can be derived from the

result of QCauM by applying inft∈[0,b] [R]
⊖
(v0:b, φ, t). For instance, comparing

the results of QCauM in Fig. 5 and the results of ClaM in Fig. 2, we can find that
the results in Fig. 2 can be reconstructed by using the results in Fig. 5.

Online Causation Monitoring of STL 15

(v, τ) |= φ M(v0:b, φ, τ) M (v0:b, φ, τ)

R(v, φ, τ)
[R]U(v0:b, φ, τ)
[R]L(v0:b, φ, τ)

[R]⊖(v0:b, φ, τ)
[R]⊕(v0:b, φ, τ)

Thm. 1

T
h
m
.
2

Thm. 3

Fig. 6: Refinement among STL monitors

Remark 1. Fig. 6 shows the refinement relations between the six STL monitor-
ing approaches. The left column lists the offline monitoring approaches derived
directly from the Boolean and quantitative semantics of STL respectively. The
middle column shows the classic online monitoring approaches. Our two causa-
tion monitors, namely BCauM and QCauM, are given in the column on the right.
Given a pair (A,B) of the approaches, A ← B indicates that the approach B
refines the approach A, in the sense that B can deliver more information than A,
and the information delivered by A can be derived from the information delivered
by B. It is clear that the refinement relation in the figure ensures transitivity.
Note that blue arrows are contributed by this paper. As shown by Fig. 6, the
relation between BCauM and QCauM is analogous to that between the Boolean and
quantitative semantics of STL.

5 Experimental Evaluation

We implemented a tool5 for our two causation monitors. It is built on the top of
Breach [15], a widely used tool for monitoring and testing of hybrid systems [18].
Being consistent with Breach, the monitors target the output signals given by
Simulink models, as an additional block. Experiments were executed on a MacOS
machine, 1.4 GHz Quad-Core Intel Core-i5, 8 GB RAM, using Breach v1.10.0.

5.1 Experiment Setting

Benchmarks. We perform the experiments on the following two benchmarks.
Abstract Fuel Control (AFC) is a powertrain control system from Toyota [27],
which has been widely used as a benchmark in the hybrid system community [18–
20]. The system outputs the air-to-fuel ratio AF, and requires that the deviation
of AF from its reference value AFref should not be too large. Specifically, we
consider the following properties from different perspectives:
– φAFC

1 := 2[10,50](|AF− AFref| < 0.1): the deviation should always be small;

– φAFC
2 := 2[10,48.5]3[0,1.5] (|AF− AFref| < 0.08): a large deviation should not

last for too long time;

5 Available at https://github.com/choshina/STL-causation-monitor, and Zenodo [39].

https://github.com/choshina/STL-causation-monitor

16 Z. Zhang, J. An, P. Arcaini, I. Hasuo

– φAFC
3 := 2[10,48](|AF−AFref| > 0.08→ 3[0,2](|AF−AFref| < 0.08)): whenever

the deviation is too large, it should recover to the normal status soon.

Automatic transmission (AT) is a widely-used benchmark [18–20], implementing
the transmission controller of an automotive system. It outputs the gear, speed
and RPM of the vehicle, which are required to satisfy this safety requirement:
– φAT

1 := 2[0,27](speed > 50 → 3[1,3](RPM < 3000)): whenever the speed is
higher than 50, the RPM should be below 3000 in three time units.

Baseline and experimental design. In order to assess our two proposed mon-
itors (the Boolean causation monitor BCauM in Def. 6, and the quantitative cau-
sation monitor QCauM in Def. 7), we compare them with two baseline monitors:
the classic quantitative robustness monitor ClaM (see Def. 4); and the state-of-
the-art approach monitor with reset ResM [40], that, once the signal violates the
specification, resets at that point and forgets the previous partial signal.

Given a model and a specification, we generate input signals by randomly
sampling in the input space and feed them to the model. The online output
signals are given as inputs to the monitors and the monitoring results are col-
lected. We generate 10 input signals for each model and specification. To account
for fluctuation of monitoring times in different repetitions6, for each signal, the
experiment has been executed 10 times, and we report average results.

5.2 Evaluation

Qualitative evaluation. We here show the type of information provided by
the different monitors. As an example, Fig. 7 reports, for two specifications of
the two models, the system output signal (in the top of the two sub-figures), and
the monitoring results of the compared monitors. We notice that signals of both
models (top plots) violate the corresponding specifications in multiple points.
Let us consider monitoring results of φAFC

1 ; similar observations apply to φAT
1 .

When using the ClaM, only the first violation right after time 15 is detected
(the upper bound of robustness becomes negative); after that, the upper bound
remains constant, without reporting that the system recovers from violation at
around time 17, and that the specification is violated again four more times.

Instead, we notice that the monitor with reset ResM is able to detect all
the violations (as the upper bound becomes greater than 0 when the violation
episode ends), but it does not properly report the margin of robustness; indeed,
during the violation episodes, it reports a constant value of around −0.4 for the
upper bound, but the system violates the specification with different degrees of
severity in these intervals; in a similar way, when the specification is satisfied
around after time 17, the upper bound is just above 0, but actually the system
satisfies the specification with different margins. As a consequence, ResM provides
sharp changes of the robustness upper bound that do not faithfully reflect the
system evolution.

6 Note that only the monitoring time changes across different repetitions; monitoring
results are instead always the same, as monitoring is deterministic for a given signal.

Online Causation Monitoring of STL 17

Signals AF and AFref

Classic monitor ClaM

Classic monitor with reset ResM
classic monitor with reset

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Violation causation distance
Satisfaction causation distance

Quantitative causation monitor QCauM

0 5 10 15 20 25 30 35 40 45 50
14

16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
Upper robustness
Lower robustness

0 5 10 15 20 25 30 35 40 45 50
14
16

alw_[10, 50](abs(AF[t]-AFref[t]) < 0.1)
AF
AFref

0 5 10 15 20 25 30 35 40 45 50

Boolean causation monitor verdict⊕

⊖

⊘

Boolean causation monitor BCauM

(a) Specification φAFC
1 and signal #4

Signals speed and RPM0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-500

0

500
Upper robustness
Lower robustness

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))

0 5 10 15 20 25 30
-500

0

500
Violation causation distance
Satisfaction causation distance

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-500

0

500 Upper robustness
Lower robustness

Classic monitor ClaM

Classic monitor with reset ResM

Quantitative causation monitor QCauM

0 5 10 15 20 25 30
0

50
100

2000
4000

alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))
speed
RPM

0 5 10 15 20 25 30
-1

0

1
Boolean causation monitor verdict

⊕

⊖

⊘

Boolean causation monitor BCauM

0 5 10 15 20 25 30
0

50

100

2000

4000
alw_[0,30](not(speed[t] > 50) or ev_[1,3](RPM[t] < 3000))

speed
RPM

0 5 10 15 20 25 30
-500

0

500
Upper robustness
Lower robustness

(b) Specification φAT
1 and signal #8

Fig. 7: Examples of the information provided by the different monitors

Table 1: Experimental results – Average (avg.) and standard deviation (stdv.)
of monitoring and simulation times (ms)

ClaM ResM BCauM QCauM

monitor total monitor total monitor total monitor total
avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv.

φAFC
1 14.6 0.1 982.8 3.5 8.8 2.4 981.3 6.7 36.9 5.4 1009.7 16.5 15.1 0.1 981.9 4.4

φAFC
2 26.8 0.2 998.5 9.0 20.2 5.2 988.0 9.9 50.4 22.4 1023.9 25.1 27.4 0.2 999.5 8.2

φAFC
3 42.0 0.3 1016.5 8.9 45.5 4.8 1016.9 7.5 48.4 6.2 1021.2 7.9 81.0 1.2 1060.1 5.3

φAT
1 16.7 0.2 966.0 2.6 24.0 17.0 980.4 24.2 96.1 82.6 1065.2 93.4 31.2 0.6 985.0 7.5

We notice that the Boolean causation monitor BCauM only reports information
about the violation episodes, but not on the degree of violation/satisfaction. In-
stead, the quantitative causation monitor QCauM is able to provide a very detailed
information, not only reporting all the violation episodes, but also properly char-
acterizing the degree with which the specification is violated or satisfied. Indeed,
in QCauM, the violation causation distance smoothly increases from violation to
satisfaction, so faithfully reflecting the system evolution.

Quantitative assessment of monitoring time. We discuss the computation
cost of doing the monitoring.

In Table 1, we observe that, for all the monitors, the monitor ing time is much
lower than the total time (system execution + monitoring). It shows that, for
this type of systems, the monitoring overhead is negligible. Still, we compare the

18 Z. Zhang, J. An, P. Arcaini, I. Hasuo

Table 2: Experimental results of the four monitoring approaches – Monitoring
time (ms) – ∆A = (QCauM−A)/A

φAFC
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 14.5 8.2 37.4 15.2 4.8 85.4 -59.4
#2 14.5 8.1 39.9 15.0 3.4 85.2 -62.4
#3 14.8 8.0 38.2 15.0 1.4 87.5 -60.7
#4 14.7 8.5 38.8 15.3 4.1 80.0 -60.6
#5 14.6 8.0 37.3 14.9 2.1 86.3 -60.1
#6 14.6 8.2 37.6 15.1 3.4 84.1 -59.8
#7 14.6 15.5 21.6 15.0 2.7 -3.2 -30.6
#8 14.7 7.9 39.5 15.0 2.0 89.9 -62.0
#9 14.6 7.8 39.9 15.1 3.4 93.6 -62.2
#10 14.5 8.0 38.4 15.1 4.1 88.8 -60.7

φAFC
2 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 26.8 19.8 45.9 27.4 2.2 38.4 -40.3
#2 27.1 27.3 27.6 27.8 2.6 1.8 0.7
#3 26.6 26.2 30.0 27.5 3.4 5.0 -8.3
#4 26.6 14.2 107.2 27.0 1.5 90.1 -74.8
#5 26.7 15.8 50.9 27.3 2.2 72.8 -46.4
#6 26.6 15.8 56.4 27.2 2.3 72.2 -51.8
#7 26.8 25.4 33.5 27.5 2.6 8.3 -17.9
#8 26.9 17.0 51.9 27.4 1.9 61.2 -47.2
#9 27.1 25.1 50.9 27.6 1.8 10.0 -45.8
#10 26.7 15.8 50.1 27.3 2.2 72.8 -45.5

φAFC
3 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 42.1 49.2 49.1 81.2 92.9 65.0 65.4
#2 42.5 42.2 42.2 82.1 93.2 94.5 94.5
#3 41.8 48.8 48.8 81.5 95.0 67.0 67.0
#4 42.0 34.9 63.4 78.8 87.6 125.8 24.3
#5 41.7 48.9 48.7 79.6 90.9 62.8 63.4
#6 41.7 48.5 48.7 79.7 91.1 64.3 63.7
#7 42.3 42.7 42.5 81.9 93.6 91.8 92.7
#8 42.1 42.2 42.0 81.6 93.8 93.4 94.3
#9 42.3 49.1 49.3 82.6 95.3 68.2 67.5
#10 41.6 48.6 49.1 80.8 94.2 66.3 64.6

φAT
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

∆ClaM ∆ResM ∆BCauM

#1 16.9 30.7 29.6 32.1 89.9 4.6 8.4
#2 16.7 17.4 17.4 31.9 91.0 83.3 83.3
#3 16.7 16.8 253.4 31.0 85.6 84.5 -87.8
#4 16.9 69.7 70.2 31.8 88.2 -54.4 -54.7
#5 16.8 19.6 135.9 31.0 84.5 58.2 -77.2
#6 16.5 26.5 200.5 30.2 83.0 14.0 -84.9
#7 16.6 14.6 37.9 31.0 86.7 112.3 -18.2
#8 16.8 16.4 143.8 31.4 86.9 91.5 -78.2
#9 16.3 13.9 38.6 31.0 90.2 123.0 -19.7
#10 16.5 14.2 33.2 30.9 87.3 117.6 -6.9

execution costs for the different monitors. Table 2 reports the monitoring times
of all the monitors for each specification and each signal. Moreover, it reports
the percentage difference between the quantitative causation monitor QCauM (the
most informative one) and the other monitors.

We first observe that ResM and BCauM have, for the same specification, high
variance of the monitoring times across different signals. ClaM and QCauM, in-
stead, provide very consistent monitoring times. This is confirmed by the stan-
dard deviation results in Table 1. The consistent monitoring cost of QCauM is a
good property, as the designers of the monitor can precisely forecast how long
the monitoring will take, and design the overall system accordingly.

We observe that QCauM is negligibly slower than ClaM for φAFC
1 and φAFC

2 , and
at most twice slower for the other two specifications. This additional monitoring
cost is acceptable, given the additional information provided by QCauM. Com-
pared to ResM, QCauM is usually slower (at most around the double); also in this
case, as QCauM provides more information than ResM, the cost is acceptable.

Compared to the Boolean causation monitor BCauM, QCauM is usually faster,
as it does not have to collect epochs, which is a costly operation. However, we
observe that it is slower in φAFC

3 , because, in this specification, most of the signals
do not violate it (and so also BCauM does not collect epochs in this case).

To conclude, QCauM is a monitor able to provide much more information that
exiting monitors, with an acceptable overhead in terms of monitoring time.

Online Causation Monitoring of STL 19

6 Related Work

Monitoring of STL. Monitoring can be performed either offline or online. Of-
fline monitoring [16, 30, 33] targets complete traces and returns either true or
false. In contrast, online monitoring deals with the partial traces, and thus
a three-valued semantics was introduced for LTL monitoring [7, 8], and in fur-
ther for MTL and STL qualitative online monitoring [24, 31], to handle the
situation where neither of the conclusiveness can be made. In usual, the quan-
titative online monitoring provides a quantitative value or a robust satisfaction
interval [12–14, 25, 26]. Based on them, several tools have been developed, e.g.,
AMT [32,33], Breach [15], S-Taliro [1], etc. We refer to the survey [3] for compre-
hensive introduction. Recently, in [35], Qin and Deshmukh propose clairvoyant
monitoring to forecast future signal values and give probabilistic bounds on the
specification validity. In [2], an online monitoring is proposed for perception
systems with Spatio-temporal Perception Logic [23].

Monotonicity issue. However, most of these works do not handle the mono-
tonicity issue stated in this paper. In [10], Cimatti et al. propose an assumption-
based monitoring framework for LTL. It takes the user expertise into account and
allows the monitor resettable, in the sense that it can restart from any discrete
time point. In [37], a recovery feature is introduced in their online monitor [25].
However, the technique is an application-specific approach, rather than a general
framework. In [40], a reset mechanism is proposed for STL online monitor. How-
ever, as experimentally evaluated in §5, it essentially provides a solution for the
Boolean semantics and still holds monotonicity between two resetting points.

Signal diagnostics. Signal diagnostics [5,22,32] is originally used in an offline
manner, for the purpose of fault localization and system debugging. In [22], the
authors propose an approach to automatically address the single evaluations
(namely, epochs) that account for the satisfaction/violation of an STL specifi-
cation, for a complete trace. This information can be further used as a reference
for detecting the root cause of the bugs in the CPS systems [5,6,32]. The online
version of signal diagnostics, which is the basis of our Boolean causation mon-
itor, is introduced in [40]. However, we show in §5 that the monitor based on
this technique is often costly, and not able to deliver the quantitative runtime
information compared to the quantitative causation monitor.

7 Conclusion and Future Work

In this paper, we propose a new way of doing STL monitoring based on causa-
tion that is able to provide more information than classic monitoring based on
STL robustness. Concretely, we propose two causation monitors, namely BCauM

and QCauM. In particular, BCauM intuitively explains the concept of “causation”
monitoring, and thus paves the path to QCauM that is more practically valuable.
We further prove the relation between the proposed causation monitors and the
classic ones.

20 Z. Zhang, J. An, P. Arcaini, I. Hasuo

As future work, we plan to improve the efficiency the monitoring, by avoiding
some unnecessary computations for some instants. Moreover, we plan to apply
it to the monitoring of real-world systems.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: A tool for
temporal logic falsification for hybrid systems. In: TACAS 2011. LNCS, vol. 6605,
pp. 254–257. Springer (2011). https://doi.org/10.1007/978-3-642-19835-9 21

2. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
Mon: Online monitoring for perception systems. In: RV 2021. pp. 297–308. Springer
(2021). https://doi.org/10.1007/978-3-030-88494-9 18

3. Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G., Maler, O., Nickovic, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:
A survey on theory, tools and applications. In: Lectures on Runtime Verification
- Introductory and Advanced Topics, LNCS, vol. 10457, pp. 135–175. Springer
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - In-
troductory and Advanced Topics, LNCS, vol. 10457. Springer (2018).
https://doi.org/10.1007/978-3-319-75632-5

5. Bartocci, E., Ferrère, T., Manjunath, N., Ničković, D.: Localizing faults in
Simulink/Stateflow models with STL. In: HSCC 2018. pp. 197–206. ACM (2018).
https://doi.org/10.1145/3178126.3178131

6. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: CPSDebug:
Automatic failure explanation in CPS models. International Journal on Software
Tools for Technology Transfer 23(5), 1–14 (2021). https://doi.org/10.1007/s10009-
020-00599-4

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time proper-
ties. In: FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer (2006).
https://doi.org/10.1007/11944836 25

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4), 1–64 (2011).
https://doi.org/10.1145/2000799.2000800

9. Ciccone, L., Dagnino, F., Ferrando, A.: Ain’t no stopping us monitoring now. arXiv
preprint arXiv:2211.11544 (2022)

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with par-
tial observability and resets. In: RV 2019. LNCS, vol. 11757, pp. 165–184. Springer
(2019). https://doi.org/10.1007/978-3-030-32079-9 10

11. Decker, N., Leucker, M., Thoma, D.: Impartiality and anticipation for monitor-
ing of visibly context-free properties. In: Legay, A., Bensalem, S. (eds.) Runtime
Verification. pp. 183–200. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

12. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7

13. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: RV 2014. LNCS, vol. 8734, pp. 231–246. Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3 19

14. Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specifica-
tion elicitation and debugging. In: MEMOCODE 2015. pp. 70–79. IEEE (2015).
https://doi.org/10.1109/MEMCOD.2015.7340472

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/s10009-020-00599-4
https://doi.org/10.1007/s10009-020-00599-4
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1109/MEMCOD.2015.7340472

Online Causation Monitoring of STL 21

15. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hy-
brid systems. In: CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer (2010).
https://doi.org/10.1007/978-3-642-14295-6 17

16. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: CAV
2013. LNCS, vol. 8044, pp. 264–279. Springer (2013). https://doi.org/10.1007/978-
3-642-39799-8 19

17. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued
signals. In: FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer (2010).
https://doi.org/10.1007/978-3-642-15297-9 9

18. Ernst, G., Arcaini, P., Bennani, I., Chandratre, A., Donzé, A., Fainekos, G., Frehse,
G., Gaaloul, K., Inoue, J., Khandait, T., Mathesen, L., Menghi, C., Pedrielli, G.,
Pouzet, M., Waga, M., Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP
2021 category report: Falsification with validation of results. In: Frehse, G., Al-
thoff, M. (eds.) 8th International Workshop on Applied Verification of Continuous
and Hybrid Systems (ARCH21). EPiC Series in Computing, vol. 80, pp. 133–152.
EasyChair (2021). https://doi.org/10.29007/xwl1

19. Ernst, G., Arcaini, P., Bennani, I., Donzé, A., Fainekos, G., Frehse, G., Math-
esen, L., Menghi, C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Yamagata, Y.,
Zhang, Z.: ARCH-COMP 2020 category report: Falsification. In: 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH20). EPiC Series in Computing, vol. 74, pp. 140–152. EasyChair (2020).
https://doi.org/10.29007/trr1

20. Ernst, G., Arcaini, P., Fainekos, G., Formica, F., Inoue, J., Khandait, T., Mah-
boob, M.M., Menghi, C., Pedrielli, G., Waga, M., Yamagata, Y., Zhang, Z.:
ARCH-COMP 2022 category report: Falsification with ubounded resources. In:
Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings of 9th In-
ternational Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22). EPiC Series in Computing, vol. 90, pp. 204–221. EasyChair (2022).
https://doi.org/10.29007/fhnk

21. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

22. Ferrère, T., Maler, O., Nickovic, D.: Trace diagnostics using temporal im-
plicants. In: ATVA 2015. LNCS, vol. 9364, pp. 241–258. Springer (2015).
https://doi.org/10.1007/978-3-319-24953-7 20

23. Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos,
G.: Formalizing and evaluating requirements of perception systems
for automated vehicles using spatio-temporal perception logic (2022).
https://doi.org/10.48550/arxiv.2206.14372

24. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric tempo-
ral logic. In: RV 2014. LNCS, vol. 8734, pp. 178–192. Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3 15

25. Jakšić, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničkovié, D.: From
signal temporal logic to FPGA monitors. In: MEMOCODE 2015. pp. 218–227.
IEEE (2015). https://doi.org/10.1109/MEMCOD.2015.7340489

26. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative mon-
itoring of STL with edit distance. Formal methods in system design 53, 83–112
(2018). https://doi.org/10.1007/s10703-018-0319-x

27. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain
control verification benchmark. In: HSCC 2014. pp. 253–262. ACM (2014).
https://doi.org/10.1145/2562059.2562140

https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/fhnk
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-319-24953-7_20
https://doi.org/10.48550/arxiv.2206.14372
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1145/2562059.2562140

22 Z. Zhang, J. An, P. Arcaini, I. Hasuo

28. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

29. Leucker, M., Schallhart, C.: A brief account of runtime verification.
The Journal of Logic and Algebraic Programming 78(5), 293–303 (2009).
https://doi.org/10.1016/j.jlap.2008.08.004

30. Maler, O., Ničković, D.: Monitoring temporal properties of continuous signals.
In: FORMATS/FTRTFT 2004, LNCS, vol. 3253, pp. 152–166. Springer (2004).
https://doi.org/10.1007/978-3-540-30206-3 12

31. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-
signal circuits. Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013).
https://doi.org/10.1007/s10009-012-0247-9

32. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualita-
tive and quantitative trace analysis with extended signal temporal logic. Interna-
tional Journal on Software Tools for Technology Transfer 22(6), 741–758 (2020).
https://doi.org/10.1007/s10009-020-00582-z

33. Ničković, D., Maler, O.: AMT: A property-based monitoring tool for analog
systems. In: FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer (2007).
https://doi.org/10.1007/978-3-540-75454-1 22

34. Pnueli, A.: The temporal logic of programs. In: FOCS 1977. pp. 46–57. IEEE
(1977). https://doi.org/10.1109/SFCS.1977.32

35. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In:
FORMATS 2020. Lecture Notes in Computer Science, vol. 12288, pp. 178–195.
Springer (2020). https://doi.org/10.1007/978-3-030-57628-8 11

36. Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D., Colombo,
C., Falcone, Y., Francalanza, A., Krstić, S., Lourenço, J.M., et al.: A sur-
vey of challenges for runtime verification from advanced application domains
(beyond software). Formal Methods in System Design 54(3), 279–335 (2019).
https://doi.org/10.1007/s10703-019-00337-w

37. Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U., Bartocci, E., Nick-
ovic, D., Grosu, R.: Runtime monitoring with recovery of the SENT communi-
cation protocol. In: CAV 2017. LNCS, vol. 10426, pp. 336–355. Springer (2017).
https://doi.org/10.1007/978-3-319-63387-9 17

38. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online causation monitoring of signal
temporal logic. arXiv (2023). https://doi.org/10.48550/arXiv.2305.17754

39. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online Causation Monitoring of Sig-
nal Temporal Logic (Artifact). Zenodo (2023), https://doi.org/10.5281/zenodo.
7923888

40. Zhang, Z., Arcaini, P., Xie, X.: Online reset for signal temporal logic monitoring.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
41(11), 4421–4432 (2022). https://doi.org/10.1109/TCAD.2022.3197693

https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-57628-8_11
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.48550/arXiv.2305.17754
https://doi.org/10.5281/zenodo.7923888
https://doi.org/10.5281/zenodo.7923888
https://doi.org/10.1109/TCAD.2022.3197693

	Online Causation Monitoring ofSignal Temporal Logic

