
Optimization-Based Model Checking
and Trace Synthesis for Complex STL

Specifications

Sota Sato1,3(B) , Jie An1,4(B) , Zhenya Zhang1,2(B) ,
and Ichiro Hasuo1,3(B)

1 National Institute of Informatics, Tokyo, Japan
{sotasato,jiean,hasuo}@nii.ac.jp
2 Kyushu University, Fukuoka, Japan

zhang@ait.kyushu-u.ac.jp
3 SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan

4 Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. Techniques of light-weight formal methods, such as moni-
toring and falsification, are attracting attention for quality assurance
of cyber-physical systems. The techniques require formal specs, however,
and writing right specs is still a practical challenge. Commonly one relies
on trace synthesis—i.e. automatic generation of a signal that satisfies a
given spec—to examine the meaning of a spec. In this work, motivated
by 1) complex STL specs from an automotive safety standard and 2) the
struggle of existing tools in their trace synthesis, we introduce a novel
trace synthesis algorithm for STL specs. It combines the use of MILP
(inspired by works on controller synthesis) and a variable-interval encod-
ing of STL semantics (previously studied for SMT-based STL model
checking). The algorithm solves model checking, too, as the dual of trace
synthesis. Our experiments show that only ours has realistic performance
needed for the interactive examination of STL specs by trace synthesis.

1 Introduction

Safety and quality assurance of cyber-physical systems (CPSs) is an important
and multifaceted problem. The pervasiveness and safety-critical nature of CPSs
makes the problem imminent and pressing; at the same time, the problem comes
with very different flavors in different application domains, calling for different
solutions. For example, in the aerospace domain, full formal verification all the
way up from the codebase seems feasible [33]. Such is a luxury that the automo-
tive domain may not afford, however, because of short product cycles, depen-
dence on third-party (thus black-box) components, heterogeneous environmental
uncertainties, and fierce competition (thus tight budget).

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), the START Grant No. JPMJST2213, the ASPIRE grant
No. JPMJAP2301, JST. S.S. is supported by KAKENHI No. 23KJ1011, JSPS. Z.Z. is
supported by JSPS KAKENHI Grant No. JP23K16865 and No. JP23H03372.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14683, pp. 282–306, 2024.
https://doi.org/10.1007/978-3-031-65633-0_13

https://doi.org/10.5281/zenodo.11001313
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65633-0_13&domain=pdf
http://orcid.org/0000-0001-7147-3989
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-65633-0_13

Optimization-Based Trace Synthesis for Complex STL Specifications 283

The above limitations in the automotive domain point, in the formal meth-
ods terms, to the absence of white-box system models. This has led to the flourish
of light-weight formal methods, such as monitoring [8], runtime verification, and
hybrid system falsification [16]. These are logic-based methods that operate on
formal specifications, often given in signal temporal logic (STL) [24]. These meth-
ods give up comprehensive guarantee due to the absence of white-box system
models; yet their values in practical usage scenarios are widely acknowledged.

Trace Synthesis and Model Checking. In this paper, we are motivated by
some automotive instances of the trace synthesis problem: it asks to synthesize
an execution trace σ of a system M that satisfies a given STL specification ϕ.
There are two major approaches to trace synthesis for CPSs.

One common approach is via hybrid system falsification [16]: here, we try
many input signals τ for M, iteratively modifying them in the direction of
satisfying ϕ; the quantitative robust semantics of STL [17] serves as an objective
function that allows hill-climbing optimization. It is notable that the system
model M can be black-box : we do not need to know its internal working; it is
enough to compute the execution trace M(τ) under given input τ . Falsification
has attracted a lot of interest especially in the automotive domain; see e.g. [16].

We take the other approach to trace synthesis, namely as the dual of the
model checking problem. Here model checking decides if, under any input τ , the
execution trace M(τ) satisfies ϕ. Our choice of this approach may be puzzling—
it requires a white-box model M, but it is rare in the automotive domain.

Analyzing Specifications (Rather Than Models). Our choice of the model
checking approach to trace synthesis comes from the following basic scope of the
paper: we use trace synthesis to analyze the quality of specifications (specs).

This is in stark contrast with many falsification tools whose scope is analyzing
models. There, a model M is extensive and complex (typically a Simulink model
of an actual product), and counterexample traces are used for “debugging” M.

In this paper, instead, a model M is simple and white-box (it can even be the
trivial model, where the input and output are the same), but a spec ϕ tends to be
complex. One typical usage scenario for our framework is when ϕ is a normative
rule—such as a law, a traffic rule, or a property required in an international
standard—in which case ϕ is imposed on many different systems (e.g. different
vehicle models). Then M should be a simple overapproximation of a variety of
systems, rather than a detailed system model.

Another typical usage scenario of our framework is an early “requirement
development” phase of the V-model of the automotive system design. Here, engi-
neers fix specs that pin down the later development efforts, in which those specs
get refined and realized. They want to confirm that the specs are sensible (e.g.
there is no mutual conflict) and faithful to their intentions. Since a system is yet
to be developed, a system model M cannot be detailed.

284 S. Sato et al.

Fig. 1. Rear-end near colli-
sion

Motivating Example. More specifically, the cur-
rent work is motivated by the work [30] on formal-
izing disturbance scenarios in the ISO 34502 stan-
dard for automated driving vehicles. There, a vehi-
cle dynamics model is simple (the scenarios should
apply to different vehicle models—see above), but
STL formulas are complex. It is observed that existing algorithms have a hard
time handling the complexity of specs (see §6 for experiments). This moti-
vated our current technical development, namely a trace synthesis algorithm
that exploits white-box models and MILP optimization for efficiency.

The following example illustrates the challenge encountered in [30].

Example 1.1 (rear-end near collision). We would like to express, in STL, a
rear-end near collision scenario for two cars. It refers to those driving situations
where a rear car Carr comes too close to a front car Carf . We assume a single-lane
setting (Fig. 1), so we can ignore lateral dynamics.

Consider the following STL formulas. Here, xf , vf , af are the variables for the
position, velocity, and acceleration of Carf ; the other variables are for Carr.

danger :≡ xf − xr ≤ 10
dyn inv :≡ xf − xr ≥ 0 ∧ 2 ≤ vf ≤ 27 ∧ 2 ≤ vr ≤ 27

trimming :≡ (♦danger) ⇒ (
(�[0,0.2]ar ≥ 0.5) U danger

)

RNC1 :≡ �(dyn inv ∧ trimming) ∧ ♦[0,9]�[0,1]danger

(1)

The last formula RNC1 formalizes rear-end near collision; in particular, its sub-
formula ♦[0,9]�[0,1]danger requires that danger occurs within 9 s and persists
for at least one second.

The formula RNC1 comes with two auxiliary conditions: dyn inv and
trimming. We shall now exhibit their content and why they are needed. In fact,
these conditions arose naturally in the course of trace synthesis, the problem of
our focus.

Specifically, in [30], we conducted trace synthesis repeatedly in order to 1)
illustrate the meaning of STL specifications and 2) confirm that they reflect
informal intentions. The generated traces were animated for graphical illustra-
tion. This workflow is much like in the tool STLInspector [31].

The formula dyn inv imposes basic constraints on the dynamics of the cars.
In the trace synthesis in [30], without this basic constraint, we obtained a number
of nonsensical example traces in which a car warps and instantly passes the other,
drives much faster than the legal maximum, and so on.

The formula trimming requires Carr to accelerate until danger occurs. It
was added to limit a generated trace to an interesting part. For example, a trace
can have danger only after a 8-s pacific journey; animating this whole trace can
easily bore users. The condition trims such a trace to the part where Carr is
accelerating towards danger.

Optimization-Based Trace Synthesis for Complex STL Specifications 285

The dynamics model used in [30] is the following simple one:

ẋf = vf , v̇f = af ; ẋr = vr, v̇r = ar. (2)

This relates x, v and a in the spec (1). The double integrator model is certainly
simplistic, but it suffices the purpose in [30] of illustrating and confirming specs.

Remark 1.2. In [30], after illustrating and confirming STL specs through trace
synthesis, the final goal was to use them for monitoring actual driving data.
Neither the dynamics model (2) nor the condition dyn inv is really relevant to
monitoring—actual driving data should comply with them anyway. In contrast,
trimming is important, in order to extract only relevant parts of the data.

Technical Solution: MILP-Based Trace Synthesis. We present a novel
trace synthesis algorithm. Note that it also solves the dual problem, namely
STL model checking. It originates from two recent lines of work: MILP-based
optimal control [14,28,29] and SMT-based STL model checking [7,23,34].

The controller synthesis techniques in [14,28,29] exploit mixed-integer linear
programming (MILP) for efficiency. The optimal control problem that they solve
can be specialized to our trace synthesis problem (detailed discussions come
later). But we found their capability of handling complex specs (as in Ex. 1.1)
limited, largely because of their constant-interval encoding to MILP.

We solve this challenge by our novel variable-interval encoding of the STL
semantics to MILP. It is inspired by the stable partitioning technique introduced
in [7]: the technique is used in [7,23,34] for logical encoding towards SMT-based
model checking; we use it for numerical encoding to MILP. This way we will solve
the bounded trace synthesis problem—in the sense that variability of the truth
values of the relevant formulas is bounded—much like in [7,23,34]. For our MILP
encoding, however, we need special care since MILP does not accommodate strict
inequalities (partitions such as . . . , (γi−1, γi), {γi}, (γi, γi+1), . . . in [7] cannot be
expressed). We therefore use a novel technique called δ-stable partitioning.

Overall, our algorithm works as follows. We assume that a system model M
can be MILP-encoded, either exactly or approximately. Some model families are
discussed in §5. This assumption, combined with our key technique of variable-
interval MILP encoding of STL, reduces trace synthesis to an MILP problem,
which we solve by Gurobi Optimizer [20]. We conduct experimental evaluation
to confirm the scalability of our algorithm, especially for complex specs (§6).

Our algorithm is anytime (i.e. interruptible): even if the budget runs out
in the course of optimization, a best-effort result (the trace that is the closest
to a solution so far) is obtained. A similar benefit is there in case there is no
execution trace σ that satisfies the spec ϕ: we obtain a trace σ′ that is the closest
to satisfy ϕ. Accommodation of parameters is another advantage thanks to our
use of MILP; we exploit it for parameter mining for PSTL formulas. See §3.

Both controller synthesis techniques [14,28,29] and SMT-based model check-
ing techniques [7,23,34] can be used for trace synthesis. The methodological
differences are discussed later in §1; experimental comparison is made in §6.

286 S. Sato et al.

Contributions and Organization. We summarize our contributions.

– We introduce an optimization-based algorithm for bounded trace synthesis for
STL specs. It assumes that a system model is white-box and MILP-encodable;
it also solves the dual problem (namely bounded model checking).

– As a key element, we introduce a variable-interval encoding of STL to MILP.
– MILP encodings of some system models, notably rectangular hybrid automata

and double integrator dynamics (suited for the automotive domain).
– We experimentally confirm scalability of our algorithm, especially for complex

specs. Comparison is made with MILP-based optimal control [14], SMT-based
model checking [34], and optimization-based falsification [11,37].

– Through the algorithm, case studies and experiments, we argue for the impor-
tance and feasibility of spec analysis for CPSs.

After exhibiting preliminaries on STL and stable partitioning in §2, we formulate
our problems (bounded trace synthesis, model checking, etc.) in §3. In §4 we
present a novel variable-interval MILP encoding of STL; in §5 we discuss MILP
encoding of a few families of models. Our main algorithm combines these two
encodings. In §6 we present experiment results.

Related Work I: Optimal STL Control with MILP. The works [14,28,29]
inspire our use of MILP for STL. Their problem is optimal controller synthesis
under STL constraints, i.e. to find an input signal τ to a system model M so
that 1) the output signal M(τ) satisfies a given STL spec ϕ and 2) it optimizes
J(M(τ)), where J is a given objective function. This problem subsumes our
problem of trace synthesis, by taking a constant function as J .

The algorithms in [14,28,29] reduce their problem to MILP by a constant-
interval encoding of the robust semantics [13,17] of STL (an enhanced encoding
is presented in [22]). Specifically, their system model is discrete-time dynamics
x(t + Δt) = fd(x(t), u(t), w(t)) with a constant interval Δt.

In contrast, in our variable-interval encoding (§4), continuous time is dis-
cretized into the intervals . . . , (γi−1, γi), {γi}, (γi, γi+1), . . . where the end points
γi are also variables in MILP. This is advantageous not only in modeling pre-
cision but also in scalability: for system models that are largely continuous,
constant-interval discretization incurs more integer variables in MILP, hamper-
ing the performance of MILP solvers. See §6 for experimental comparison.

Related Work II: SMT-Based STL Model Checking. Our key techni-
cal element (a variable-interval MILP encoding of STL) uses the idea of stable
partitioning from [7,23,34]. They solve bounded STL model checking, and also
its dual (trace synthesis). The main difference is the class of system models M
accommodated. SMT solvers accommodate more theories than MILP solving,
and thus allows encoding of a greater class of models. In contrast, by restricting
the model class to MILP-encodable, our algorithm benefits speed and scalabil-
ity (MILP is faster than SMT). Iterative optimization in MILP also makes our
algorithm an anytime one. Native support of parameter synthesis is another plus.

Optimization-Based Trace Synthesis for Complex STL Specifications 287

Other Related Work. Optimization-based falsification has its root in the
quantitative robust semantics of STL [13,17]; the successful combination with
stochastic optimization metaheuristics has made falsification an approach of both
scientific and industrial interest. See the ARCH competition report [16] for state-
of-the-art. Falsification is most of the time thought of as search-based testing ;
therefore, unlike the model checking approach, the absence of counterexamples
is usually not proved. Exceptions are [25,35] where they strive for probabilistic
guarantees for such absence.

The current work is motivated by the observation that falsification solvers
often struggle in trace synthesis for complex STL specs, even if a system model
is simple. It is known that specs with more connectives pose a performance
challenge, and many countermeasures are proposed, including [2] (for temporal
operators) and [36,37] (for Boolean connectives).

2 Preliminaries

We let N, R denote the sets of natural numbers and reals, respectively; R≥0

denotes an obvious subset. The set R = R ∪ {−∞,∞} is that of extended reals.
The set B = {	,⊥} is for Boolean truth values. The powerset of a set X is
denoted by ℘(X). An interval is a subset of R≥0 of the form (a, b), [a, b), (a, b],
or [a, c], where a < b and a ≤ c. Therefore a singleton {a} is an interval.

Definition 2.1 (linear predicate pand �p�, πp). Given a set V of variables, a
(closed) linear predicate is a function p : R

V → B defined as follows, using some
c ∈ R

V and b ∈ R: p(x) = 	 if and only if c�x + b ≥ 0. We write �p� for the
closed half-space {x | p(x) = 	} ⊆ R

V .
For the above p, we define a function πp(x) : R

V → R by πp(x) := c�x + b.
This is understood as the degree of satisfaction (or violation, if negative) of a
linear predicate p by x ∈ R

V . Indeed, πp(x) is the (signed) Euclidean distance
to the boundary of �p�, assuming that the Euclidean norm of c is ‖c‖ = 1.

Definition 2.2 (signal). Let V be a finite set of variables and T a positive
real. A signal over V with a time horizon T is a function σ : [0, T] → R

V . We
write SignalTV for the set of all signals over V with time horizon T , or simply
SignalV when T is clear from the context.

If necessary, the domain [0, T] of σ can be extended to R≥0 by setting σ(t) :=
σ(T) for all t > T . This allows us to define the notion of t-postfix, which will
serve as the basis of the STL semantics (§2.1). Precisely, the t-postfix of σ is a
signal σt defined by σt(t′) := σ(t + t′). The domain of σt can be chosen freely
but we set it to [0, T] for consistency.

Definition 2.3 (system model, trace set L(M)). Let V, V ′ be finite sets of
variables. A system model M from V ′ to V with a time horizon T is a function
M : SignalTV ′ → ℘(SignalTV). The trace set L(M) :=

⋃
τ∈SignalT

V ′
M(τ) is the

set of all output signals of M where an input signal τ can vary.

288 S. Sato et al.

We allow system models to be nondeterministic (note the the powerset construc-
tion ℘); the models in §1 were deterministic for simplicity. A special case of the
above is when V ′ = ∅, that is, when M does not have any input. In this case, a
system model M can be identified with a subset L(M) ⊆ SignalV .

Example 2.4 (MRNC). The dynamics model in Ex. 1.1 is formalized as a sys-
tem model MRNC whose input variables (in V ′) are af , v

init
f , xinit

f , ar, v
init
r , xinit

r ,
and output variables (in V) are af , vf , xf , ar, vr, xr. Here, the input is acceler-
ation rates (af , ar) and the initial values of velocities and positions (modeled
using signals vinit

f etc. for convenience). The time horizon T of M represents its
simulation time; here we set T = 20. Given an input signal τ , the output M(τ)
is a singleton M(τ) = {σ}, and σ is determined by the ODE (2). Specifically,
σ(t)(af) = τ(t)(af), σ(t)(vf) = τ(0)(vinit

f) +
∫ t

0
τ(t′)(af) dt′, and so on.

2.1 Signal Temporal Logic

Definition 2.5 (signal temporal logic (STL)). In STL, an atomic proposi-
tion over a variable set V is represented as p :≡ (f(
w) ≥ 0), where f : R

V → R

is a function that maps a V -dimensional vector
w to a real. The syntax of an
STL formula ϕ (over V) is defined as follows: ϕ :≡ p | ⊥ | 	 | ¬ϕ | ϕ1 ∨ ϕ2 |
ϕ1 ∧ ϕ2 | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2, where I is a nonsingular closed time
interval, and ♦I , �I ,UI , RI are temporal operators eventually, always, until and
release. Implication is defined: ϕ1 ⇒ ϕ2 :≡ ¬ϕ1 ∨ ϕ2. We write temporal opera-
tors without the subscript I when I = [0,∞] (e.g., ♦). Note that we do not lose
generality by restricting the inequality in p :≡ (f(
w) ≥ 0). Indeed, ≤, <,> can
be encoded using (a combination of) −f and ¬.

The set Sub(ϕ) collects all subformulas of an STL formula ϕ; the set AP(ϕ)
collects all atomic propositions α occurring in ϕ.

Proposition 2.6. Every STL formula has a formula in the negation normal
form (NNF)—i.e. one in which negation ¬ appears only in front of atomic
propositions—that is semantically equivalent. ��
Assumption 2.7. We assume that each atomic proposition p is a linear pred-
icate (Def. 2.1), that is, f(x) = c�x + b with some c ∈ R

V , b ∈ R in each
p :≡ (f(
w) ≥ 0).

The Boolean semantics σ |= ϕ and robust semantics �σ, ϕ� ∈ R of STL are
standard. See [32, Appendix A].

PSTL is a parametric extension of STL. It is from [4]; see also [9]. Its defini-
tion is in [32, Appendix A]. The semantics of PSTL formula is defined naturally
by fixing
u,
v; see Prob. 3.3 for the specific forms we use.

2.2 Finite Variability

The satisfiability checking problem for STL—this is equivalent to the model
checking problem under the trivial (identity) system model—is already

Optimization-Based Trace Synthesis for Complex STL Specifications 289

EXPSPACE-complete [3]. To ease computational complexity, bounded model
checking has been a common approach [23,26]. Its main idea is to bound the
number of time-points at which the truth value of each subformula can vary.

Definition 2.8 (finite variability [27]). A (finite) partition P of an interval
D ⊆ R is a sequence P = (Ji)N

i=1 of nonempty and mutually disjoint intervals
such that

⋃N
i=1 Ji = D, and sup(Ji) ≤ inf(Ji′) for any i < i′. A Boolean signal

q : R≥0 → B is constant on an interval J ⊆ R≥0 if q(t) = q(t′) for any t, t′ ∈ J .
We say q(t) has N -bounded variability if there exists a partition P of [0,∞) and
q(t) is constant on every interval J ∈ P.

Let σ : [0, T] → R
V be a signal and ϕ be an STL formula over V . We say that

σ has the N -bounded variability with respect to ϕ if the Boolean (truth value)
signal t �→ (σt |= ϕ) has the N -bounded variability. We say σ is finitely variable
with respect to ϕ if it has the N -bounded variability for some N .

Finally, we say σ has the hereditary N -bounded variability with respect to
ϕ if, for each subformula ψ ∈ Sub(ϕ), σ has the N -bounded variability with
respect to ψ. We write N -HBV for the hereditary N -bounded variability.

Lemma 2.9 ([7]). Let ϕ be an STL formula. A signal σ has the N -HBV with
respect to ϕ for some N if and only if it is finitely variable with respect to each
atomic proposition p ∈ AP(ϕ) occurring in ϕ. ��

The following is the basis of bounded model checking in [7,23].

Definition 2.10 (stable partition). Let σ be a signal, ϕ be an STL formula,
and P be a partition of [0, T] such that every J ∈ P is singular or open. Intu-
itively, P looks like {γ0}, (γ0, γ1), {γ1}, (γ1, γ2), . . . , {γN}. We say P is a stable
partition for σ and ϕ if t �→ σt |= ψ is constant on J for each J ∈ P, ψ ∈ Sub(ϕ).

3 Problem Formulation

We formulate our problems and discuss their mutual relationship. The next
problem is studied in [7,23,34].

Problem 3.1 (bounded STL model checking). Given an STL formula ϕ
(over V), a system model M (from V ′ to V) with time horizon T , and a vari-
ability bound N ∈ N, decide if the following is true or not: σ |= ϕ holds for
an arbitrary trace σ ∈ L(M) (cf. Def. 2.3) that has the hereditary N -bounded
variability (N -HBV) with respect to ϕ.

The following is the dual of Prob. 3.1, and is our main scope.

Problem 3.2 (bounded STL trace synthesis). Given ϕ,M, T and N as in
Prob. 3.1, find a trace σ ∈ L(M) such that 1) σ has the N -HBV with respect
to ϕ and 2) σ |= ϕ holds, or prove that such σ does not exist.

290 S. Sato et al.

Prob. 3.2 resembles the falsification problem [17]: given M (that can be black-
box) and ϕ′, find a counterexample input τ such that M(τ) �|= ϕ′. The emphases
and the settings are often different though; see §1.

The following is a special case of the STL parameter mining problem; see
e.g. [9, § 3.5]. Recall from [32, Def. A.3] that ϕ�u,�v instantiates parameters
p,
q in
ϕ with real values
u,
v from the domains P,Q, respectively.

Problem 3.3 (bounded existential parameter mining). Let ϕ be a PSTL
formula over parameters (
p,
q), and M, T and N be as in Prob. 3.1. Find the set{

(
u,
v) ∈ P × Q
∣
∣ σ |= ϕ�u,�v for some σ ∈ L(M) that has the N -HBV wrt. ϕ

}
.

In §6, we study a further special case where there is only one parameter p and
the goal is to find the maximum p in the above set.

Fig. 2. A stable partition (cf. [7]) for σ
and ϕ :≡ x ≥ 1. The symbols � and ⊥
denote the (constant) truth value of ϕ
each interval Ji.

Fig. 3. A δ-stable partition (Def. 4.7) for
σ and ϕ. Here ϕδ ≡ (x ≥ 1+δ). � and ⊥
are much like in Fig. 2; the symbol ? indi-
cates that the truth value is not necessar-
ily constant. In some regions (shaded),
σt |= ϕ is true but σt |= ϕδ is not.

4 Variable-Interval Encoding of STL to MILP

4.1 δ-Stable Partitions

We shall adapt the idea of stable partitioning [7], reviewed in §2.2, to the current
MILP setting. A major difference we need to address is that SMT is symbolic
while MILP is numerical: most MILP solvers do not distinguish < from ≤ and
do not accommodate strict inequalities. See e.g. [20].

In order to address this difference, we develop a theory of δ-stable partitions.
Here is its outline. Firstly, we replace partitions . . . , (γi−1, γi), {γi}, (γi, γi+1), . . .
used in [7] (see also Def. 2.10) with new “partitions” . . . , [γi−1, γi], [γi, γi+1],
The latter can be expressed only using ≤; but they have overlaps (at γi). The
original stability notion (see §2.2) does not fit the new partition notion—it
requires “constantly true” or “never true,” and prohibits overlaps. Therefore
we introduce δ-stability ; it requires either “constantly true” or “never robustly
true.”

Optimization-Based Trace Synthesis for Complex STL Specifications 291

Example 4.1. Let σ be a continuous signal. Suppose that a sequence P =
(Ji)

M
i=1 is a stable partition for σ and an STL formula ϕ, as illustrated in Fig. 2.
In this paper, since MILP solvers do not accommodate strict inequalities,

we are forced to use closed intervals; see Γ1, . . . , Γ4 in Fig. 3. Notice that the
truth value of the formula ϕ not constant in Γ2 or Γ4. To regain stability, we
introduce the δ-tightening ϕδ of the formula ϕ with some δ > 0 (Def. 4.4); here
ϕδ ≡ (x ≥ 1 + δ). Then the truth value of ϕδ (instead of ϕ) is constantly false
in Γ2 and Γ4, that is, ϕ is “never δ-robustly true” in Γ2 and Γ4.

Definition 4.2 (timed state sequence). A time sequence of [0, T] is a
sequence Γ = (0 = γ0 < · · · < γN = T). Such a time sequence induces a “parti-
tion of [0, T] with singular overlaps,” namely Γ =

(
[γi−1, γi]

)N

i=1
. We identify it

with the original time sequence, writing Γi for the interval [γi−1, γi].
Given a time sequence, a timed state sequence over V is a sequence ς =(

(x0, γ0), . . . , (xN , γN)
)
, where x0, . . . , xN in R

V .

In MILP, it is efficient to represent signals as (continuous) piecewise-linear sig-
nals, so that values within an interval can be deduced by linear interpolation.

Definition 4.3 (piecewise-linear signal). Given a timed state sequence ς =
((x0, γ0), . . . , (xN , γN)), the signal ςpwl : [0, γN] → R

V is defined by the following
linear interpolation: ςpwl(t) := (1 − λ)xi−1 + λxi if γi−1 ≤ t ≤ γi (where λ =

1
γi−γi−1

(t − γi−1)).
In this paper, a piecewise-linear signal is a signal of the form ςpwl for some

timed state sequence ς. Note that it is continuous everywhere, and is linear every-
where except for only finitely many points. Obviously, ςpwl is finitely variable
with respect to any linear predicate p (Def. 2.1).

Definition 4.4 (δ-tightening of linear predicates). Let δ > 0 be a positive
real and p be a linear predicate defined by p(x) = 	 ⇐⇒ c�x + b ≥ 0. The
δ-tightening of p is a linear predicate defined by pδ(x) = 	 ⇐⇒ c�x + b ≥ δ.

Note that pδ is stronger than p, i.e., [[pδ]] � [[p]]. We further extend the concept
of δ-tightening for general STL formulas in NNF (cf. Prop. 2.6). Let p− be the
linear predicate defined by p−(x) = 	 ⇐⇒ −c�x − b ≥ 0.

Definition 4.5 (δ-tightening of STL formulas in NNF). Let ϕ be an STL
formula in NNF. The δ-tightening ϕδ of ϕ is the STL formula obtained from ϕ
by replacing all occurrences of atomic predicates p (resp. ¬p) by pδ (resp. (p−)δ).

The δ-tightening construction is related to robust semantics [32, Def. A.2].

Proposition 4.6. Let σ be a signal, ϕ be an STL formula in NNF, and δ > 0.
Then σ |= ϕδ implies [[σ, ϕ]] ≥ δ. ��

292 S. Sato et al.

Since the closed halfspace [[p−]] coincides with the closure of the open halfspace
R

V \ [[p]], the robust semantics is not affected by the difference between p− and
¬p. For simplicity, in the following, we assume that any STL formula in NNF
does not contain negation, i.e., ¬p is replaced by a new atomic proposition p−.

We are ready to define δ-stability.

Definition 4.7 (δ-stability). Let ϕ be an STL formula over V in NNF, σ ∈
SignalTV be a signal, and Γ = (γ0, . . . , γN) be a time sequence (Def. 4.2) with
γN = T . We say Γ is δ-stable for σ and ϕ if, for each i ∈ [1, N] and each
subformula ψ ∈ Sub(ϕ), either of the following holds: 1) σt |= ψ for each t ∈ Γi,
or 2) σt �|= ψδ for each t ∈ Γi.

In the above definition, in each interval Γi, a subformula ψ is either 1) always true
or 2) never robustly true. The two conditions are not mutually exclusive—both
hold if σt |= ψ ∧ ¬ψδ for all t ∈ Γi.

The next notion of conservative valuation records which of 1) and 2) is true
in each interval. It conservatively approximates the actual truth of ϕ (Fig. 3).

Definition 4.8 (conservative valuation). Let ϕ be an STL formula in NNF,
and Γ = (γ0, . . . , γN) be a time sequence . A valuation of ϕ in Γ is a function
Θ : Sub(ϕ) × [1, N] → B that assigns, to each subformula and index of the
intervals of Γ , a Boolean truth value. Let σ be a signal with a time horizon
T = γN . We say that Θ is a conservative valuation of ϕ in Γ on σ (up to δ) if
1) Θ(ψ, i) = 	 implies that, for each t ∈ Γi, σt |= ψ holds; and 2) Θ(ψ, Γi) = ⊥
implies, for each t ∈ Γi, σt �|= ψδ.

We simply write 〈ψ〉i for Θ(ψ, i) when Θ is clear from context.
Suppose there exists a conservative valuation Θ of an STL formula ϕ in a

time sequence Γ on a signal σ up to δ. Then Γ is δ-stable for σ and ϕ.
We shall argue in §4.2 that, for each piecewise-linear signal σ (Def. 4.3), an

STL formula ϕ, there is a time sequence Γ in which ϕ is δ-stable on σ. We start
with a special case where ϕ is an atomic proposition p.

Definition 4.9. Let x, x′ ∈ R
V , and p be a linear predicate on V . We say (x, x′)

is a δ-crossing pair with respect to p if x ∈ �pδ� and x′ �∈ �pδ� (cf. Def. 2.1), or
vice versa. A δ-crossing pair is stationary if x ∈ �p� and x′ ∈ �p�.

Lemma 4.10. Let p be a linear predicate and σ be a piecewise-linear signal.
There is a time sequence Γ = (γ0, . . . , γN) such that, for any i ∈ [1, N], 1) σ is
linear in the interval [γi−1, γi], and 2) if (σ(γi−1), σ(γi)) is a δ-crossing pair, it
is stationary. It follows that there is a conservative valuation Θ of p in Γ on σ.

Proof. The lemma argues that, whenever σ enters or leaves �pδ�, it has to do so
via �p� \ �pδ�. See Fig. 4. This can be enforced by adding suitable points to Γ ,
exploiting continuity of σ (Def. 4.3) and the intermediate value theorem. ��

Optimization-Based Trace Synthesis for Complex STL Specifications 293

Fig. 4. A conservative valuation
Θ of a linear predicate p on σ.
The red segments are assigned �
by Θ. (Color figure online)

We note another advantage of δ-stable parti-
tions: the number of invervals is roughly halved
compared to (original) stable partitions (see
Figs. 2 and 3). This advantage may be exploited
also in SMT-based approaches [7] for scalability.

4.2 Variable-Interval MILP Encoding

Our MILP encoding of STL relies on the con-
structs in §4.1. For the purpose of trace synthe-
sis for an STL formula ϕ, our basic strategy is to
search for 1) a time sequence Γ = (γ0, . . . , γN)
(i.e. a “partition,” see Def. 4.2) and 2) a valua-
tion Θ : Sub(ϕ) × [1, N] → B, such that

– Θ is consistent in the sense that the truth values assigned to subformulas
comply with the STL semantics (§2.1);

– Θ is fulfilling in the sense that it assigns 	 to the top-level formula ϕ in Γ1

(the first interval); and
– Θ is realizable in the sense that there is a piecewise-linear trace σ ∈ L(M) of

M that yields Θ. That is, precisely, Θ must be a conservative valuation of ϕ
in Γ on σ (Def. 4.8).

The entities Γ,Θ we search for are expressed as MILP variables, and the above
three conditions are expressed as MILP constraints. We describe these MILP
variables and constraints in the rest of the section. The constraints expressing
σ ∈ L(M) require system model encoding and are thus deferred to later sections.

Variables. We use the following MILP variables. Their collection is denoted by
Var(ϕ,N). Here N ∈ N is a constant for variability bound (Prob. 3.2).

– Real-valued variables {γ0, . . . , γN} for a time sequence Γ .
– Boolean variables {〈ψ〉i | 1 ≤ i ≤ N,ψ ∈ Sub(ϕ)} for the value Θ(ψ, i) of a

valuation Θ that we search for.
– Real-valued variables {xi,v | 0 ≤ i ≤ N, v ∈ V } for the values of a piecewise-

linear trace σ ∈ L(M).
– Boolean variables {ζp

i , ζδ,p
i | 0 ≤ i ≤ N, p ∈ AP(ϕ)} for the truth values of p

and pδ at time γi. These variables are used to detect crossing pairs (Def. 4.9).
– Real-valued variables {Sψ

i | 0 ≤ i ≤ N,�Iψ ∈ Sub(ϕ)}. This auxiliary vari-
able records for how long ψ has been true before γi.

– Real-valued variables {Pψ
i | 0 ≤ i ≤ N,♦Iψ ∈ Sub(ϕ)}. This auxiliary vari-

able records for how long ψ has been false before γi.

By an assignment we refer to a function v : Var(ϕ,N) → R such that v(y) ∈
{0, 1} for each Boolean variable y. The MILP problem is to find an assignment
v that optimizes an objective under given constraints.

294 S. Sato et al.

Notation 4.11. In what follows, as a notational convention, we simply write
a variable y for the value v(y) when the assignment v is clear from context.
We further write ς for the timed state sequence composed of the time sequence
{γ0, . . . , γN} and the trace values {xj,v | 0 ≤ j ≤ N, v ∈ V }.

Note that, in this paper, we encode the Boolean semantics of STL [32, Def.
A.1], unlike [28,29] where the robust semantics is encoded in a constant-interval
manner. The combination of variable-interval encoding and quantitative robust
semantics is future work; for example, a quantitative extension of δ-stable par-
titions (§4.1) seems quite nontrivial.

Shorthands for Propositional Connectives. We use standard shorthands
for Boolean connectives in MILP constraints (such as ¬A,A∧B where A,B are
Boolean variables). See [32, Appendix B] for the formal encodings.

Realizability Constraints: Traces and Atomic Propositions. We need to
constrain γ0, . . . , γN to be a time sequence (Def. 4.2), using some constant ε > 0
and letting · · · ≥ ε stand for · · · > 0.

γ0 = 0, γN = T, γi − γi−1 ≥ ε for all i ∈ [1, N] (3)

For each i and p ∈ AP(ϕ) (say p is defined by c�x+ b ≥ 0), the variables ζp
i , ζδ,p

i

are constrained as follows,

ζp
i = 1 ⇒ c�xi + b ≥ 0 ζp

i = 0 ⇒ c�xi + b ≤ −ε

ζδ,p
i = 1 ⇒ c�xi + b ≥ δ ζδ,p

i = 0 ⇒ c�xi + b ≤ δ − ε
(4)

Moreover, we impose the following to ensure that Γ is the one in Lem. 4.10:

ζδ,p
i = 0 ∧ ζδ,p

i+1 = 1 ⇒ ζp
i = 1, ζδ,p

i = 1 ∧ ζδ,p
i+1 = 0 ⇒ ζp

i+1 = 1 (5)

Under constraints (3) to (5), Γ is δ-stable for ςpwl (cf. Def. 4.3) and p, by Lem.
4.10. By the definition of δ-stability, we can now constrain the variable 〈p〉i by
〈p〉i = ζp,δ

i−1 ∨ ζp,δ
i for each i and p ∈ AP(ϕ).

Remark 4.12. Note that ε must be chosen to be small enough for the complete-
ness of the encoding (Thm. 4.18). Thereafter we assume that, given a piecewise-
linear signal σ and an STL formula ϕ, ε is small enough to find a δ-stable
partition for σ and ϕ, and we omit ε from the constraints for simplicity.

Consistency Constraints I: Boolean Connectives. We can directly encode
conjunction

∧m
j=1 ψj in STL by recursively applying the shorthand ∧ in [32,

Appendix B]: 〈∧m
j=1 ψj〉i = 〈ψ1〉i∧〈∧m

j=2 ψj〉i for each i ∈ [1, N]. It is known that
the following alternative encoding avoids auxiliary variables 〈∧m

j=k ψj〉i (where
k varies): for each i ∈ [1, N], 〈∧m

j=1 ψj〉i ≥ 1−m +
∑m

j=1〈ψj〉i and 〈∧m
j=1 ψj〉i ≤

〈ψj〉i. An encoding for disjunction is given similarly: 〈∨m
j=1 ψj〉i ≤ ∑m

j=1〈ψj〉i,
〈∨m

j=1 ψj〉i ≥ 〈ψj〉i.

Optimization-Based Trace Synthesis for Complex STL Specifications 295

Consistency Constraints II: Unbounded Temporal Modalities. For tem-
poral operators with I = [0,∞), the following encodings are straightforward.

〈ψ1U ψ2〉i = 〈ψ2〉i ∨ (〈ψ1U ψ2〉i+1 ∧ 〈ψ1〉i),
〈ψ1R ψ2〉i = 〈ψ2〉i ∧ (〈ψ1R ψ2〉i+1 ∨ 〈ψ1〉i) for each i ∈ [1, N − 1],
〈ψ1U ψ2〉N = 〈ψ2〉N , 〈ψ1R ψ2〉N = 〈ψ2〉N for i = N .

(6)

The encodings for ♦,� are special cases.

Consistency Constraints III: Bounded Temporal Modalities. This is
the most technically involved part. The challenge here is that the stability for
�[a,b]ψ is not guaranteed by the stability for ψ (similarly for ♦[a,b]ψ). Therefore
we need additional MILP constraints for the stability for �[a,b]ψ.

Our encoding is inspired by the results from [26]; ours is simpler thanks to
our theory in §4.1 where intervals are all closed.

Recall that we use the variables Sψ
i , Pψ

i for this purpose. We focus on �[a,b]ψ;
the encoding of ♦[a,b]ψ is similar. The constraints on Sψ

i are as follows.

Sψ
0 = 0, 〈ψ〉i = 0 ⇒ Sψ

i = 0,

〈ψ〉i = 1 ⇒ Sψ
i ≥ Sψ

i−1 + (γi − γi−1) for each i ∈ [1, N].

It follows that, for any non-negative real number L ∈ [0, γj), we have Sψ
j ≤ L if

and only if there exists k ∈ [1, j] such that 〈ψ〉k = 0 and γj − γk ≤ L.
We proceed to the constraints that describe the relationship between Sψ

i and
the semantics of �Iψ. Suppose Γ = (γ0, . . . , γN) is δ-stable for a signal σ and
ψ. Let us write γN+1 = ∞ and 〈ψ〉N+1 = 〈ψ〉N for simplicity.

We consider consistency for the positive and negative cases separately. For
the positive one (i.e. 〈�[a,b]ψ〉i = 1), the following observation is used.

Proposition 4.13. Let ϕ ≡ �Iψ be an STL formula in NNF, and Θ be a
conservative valuation of ψ in Γ = (γ0, . . . , γN) on a signal σ. Given i ∈ [1, N],
suppose (Γi + I) ∩ (γj−1, γj] �= ∅ implies 〈ψ〉j = 1 for each j ∈ [i,N + 1]. Then
σt |= ϕ holds for any t ∈ Γi. ��
Prop. 4.13 leads to the following MILP constraint:

¬〈ϕ〉i ∨ (γi + b ≤ γj−1) ∨ (γi−1 + a > γj) ∨ 〈ψ〉j for each i ∈ [1, N],j ∈ [i, N + 1].

The constraint itself does not follow the MILP format; we can nevertheless
express it in MILP using an auxiliary Boolean variable Zf . Specifically, an
inequality f(x) ≥ 0 in a disjunctive constraint is constrained by Zf = 1 ⇒
f(x) ≥ 0.

For the consistency in the negative case (i.e. 〈�[a,b]ψ〉i = 0), the counterpart
of Prop. 4.13 also involves Sψ

j . See below; it leads to an MILP constraint much
like Prop. 4.13 does.

296 S. Sato et al.

Proposition 4.14. Suppose ϕ, σ, Γ , and Θ are as in Prop. 4.13. For any t ∈ Γi,
σt �|= ϕδ holds if the following conditions are satisfied for each j ∈ [i,N]:

⎧
⎪⎨

⎪⎩

Sψ
j ≤ b − a if γj ∈ (γi−1 + b, γi + b),

Sψ
j ≤ γj − γi − a if γi + b ∈ [γj−1, γj],

Sψ
N ≤ max(0, γN − γi − a) if γi + b > γN .

(7)

Proof. Let jt ∈ [i,N +1] be the unique index such that t+b ∈ [γjt−1, γjt). When
jt ≤ N and γjt < γi + b, we have γjt ∈ (γi−1 + b, γi + b) and by assumption
Sψ

jt
≤ b − a. There is k ∈ [1, jt] such that 〈ψ〉k = 0 and γk ≥ γjt − b + a > t + a.

We obtain Γk ∩ (t + [a, b]) �= ∅ and then σt �|= ϕδ holds. The other cases can be
checked in a similar manner. ��
Remark 4.15. For Prop. 4.13, the converse of the statement does not hold.
This is because σt |= ψ does not guarantee 〈ψ〉i := Θ(ψ, i) = 1 where t ∈ Γi—we
allow 〈ψ〉i = 0 when σt |= ψ ∧ ¬ψδ. It is similar for Prop. 4.14. However, this
does not affect the completeness of the encoding (Thm. 4.18): while the converse
of Prop. 4.13 does not hold for fixed Γ , in our workflow we also search for Γ , in
which case it is easily shown that the MILP constraints derived from Prop. 4.13
are complete. The same is true for Prop. 4.14.

The remaining cases (ϕ ≡ ψ1 UI ψ2 and ϕ ≡ ψ1 RI ψ2) can be reduced to the
cases for �I and ♦I . It is by the rewriting techniques shown in [12]:

ψ1 U[a,b] ψ2 ∼ ♦[a,b]ψ2 ∧ �[0,a](ψ1U ψ2), (8)
ψ1 R[a,b] ψ2 ∼ �[a,b]ψ2 ∨ ♦[0,a](ψ1R ψ2). (9)

These equivalences hold in both Boolean and robust semantics.

Correctness of Encoding. Let EncSTL(ϕ,N, T, δ) denote the polyhedron
defined by the above MILP constraints. It is correct in the following sense; see
also the goal we announced in the beginning of §4.2. Its proof is by induction on
ϕ.

Lemma 4.16. Let ϕ be an STL formula in NNF, N ∈ N, T > 0 and δ > 0.
Given an assignment v : Var(ϕ,N) → R that lies in EncSTL(ϕ,N, T, δ), let Γ , ς
be the time sequence and the timed state sequence determined by v, and define a
valuation Θ by Θ(ψ, i) := 〈ψ〉i (cf. Def. 4.8). Then Θ is a conservative valuation
of ϕ in Γ on the signal ςpwl. ��

We define Enc(ϕ,M, N, T, δ) by the intersection of EncSTL(ϕ,N, T, δ), the
MILP encoding Encmodel(M, N, T) of a system model M, and 〈ϕ〉1 = 1.

Theorem 4.17 (soundness). Let ϕ be an STL formula in NNF, M be a
model with a time horizon T , N ∈ N and δ > 0. If an assignment v lies in
Enc(ϕ,M, N, T, δ), the induced ςpwl has ςpwl ∈ L(M) and �ςpwl, ϕ� ≥ 0. ��
Theorem 4.18 (completeness). Assume the setting of Thm. 4.17. If there is
piecewise-linear σ ∈ L(M) such that �σ, ϕ� ≥ δ, there is an assignment v that
lies in Enc(ϕ,M, N, T, δ) for some N ∈ N. ��

Optimization-Based Trace Synthesis for Complex STL Specifications 297

5 System Models and Their MILP Encoding

We introduce the MILP encoding Encmodel(M, N, T) for some families of mod-
els M. We introduce an exact encoding for rectangular hybrid automata (RHAs),
and an approximate one for HAs with closed-form solutions. We also introduce
a refinement of the latter—it is more precise and efficient—restricting to double
integrator dynamics. The last is useful for automotive examples such as Ex. 1.1.

We defer the discussion of RHAs for the space reason; see [32, Appendix C].
We thus focus on the other two families.

5.1 HAs with Closed-Form Solutions

Fig. 5. MILP encoding of
f(t)

Here we are interested in hybrid automata (HAs)
whose continuous flow dynamics at each control
mode has a closed-form solution. The basic idea is
simple and it is illustrated in Fig. 5, where the solu-
tion f(t) of dynamics (blue) is approximated by a
piecewise linear function (red). Such MILP encod-
ing is standard; see e.g. [5].

We formalize this intuition. Firstly, to accom-
modate input signals τ ∈ SignalV ′ (Def. 2.3), we
extend the HA definition so that some variables xin

can be designated to be input variables. This means that there are no ODEs
whose left-hand side is ˙xin, and that the variable updates associated with mode
transitions never change xin.

Then the above “closed-form solution” assumption on an HA H is precisely
described as follows. Let
xin = (xin

1 , . . . , xin
k) enumerate H’s input variables, and

x = (x1, . . . , xl) enumerate its other variables. We assume that, for the flow
dynamics at each control mode u, there is a closed-form solution

x(t) = fu(t,
xin,
x0) such that, for each t0 ∈ R≥0, fu(t0,
xin,
x0) is a
linear function over the variables
xin,
x0.

(10)

Here, the variable t is the elapsed time since the arrival at the current control
mode u; the variables
xin refer to the input variables (their values are assumed
to be constant within the same mode); and the variables
x0 refer to the initial
values of
x on the arrival at u. The assumption holds in many examples, such
as polynomial dynamics.

Let us motivate the assumption. A closed-form solution fu helps precision: in
piecewise linear approximation such as in Fig. 5, errors do not accumulate over
time; in contrast, if a closed-form solution is not given, our alternative will be
numerical integration e.g. by the Euler method, where errors accumulate. The
linearity assumption in (10) is there for MILP encoding; see below.

Our approximate MILP encoding poses the closed-form solution assumption
and follows the intuition of Fig. 5. Specifically, 1) it fixes a constant Δt ∈ R≥0 as

298 S. Sato et al.

a sampling interval; 2) it obtains a family
(
fu(k·Δt,
xin,
x0)

)
k

of linear functions

over the variables
xin,
x0; and 3) the value of
x at the elapsed time t is expressed
by the linear interpolation

(k+1)Δt−t
Δt fu(kΔt,
xin,
x0) + t−kΔt

Δt fu

(
(k + 1)Δt,
xin,
x0

)
, (11)

where k is such that kΔt ≤ t ≤ (k + 1)Δt. This encoding of flow dynamics is
combined with the HA structure, much like in [32, Appendix C], yielding an
approximate MILP encoding of the whole HA.

The above encoding has two sources of numerical errors. One is linear interpo-
lation. Errors caused by it are illustrated in Fig. 5 as the vertical margin between
blue and red.

The other source is binary expansion [18,19], a standard MILP technique
for encoding bilinear functions. Indeed, in (11), t,
xin,
x0 are all continuous vari-
ables in MILP, and the expression (11) can contain their products. The linearity
assumption in (10) has been posed to restrict (11) to bilinear.

5.2 HAs with Double Integrator Dynamics

Our next focus is a special case of the model family of §5.1, where each continuous
flow is double integrator dynamics. This is important because 1) it gets rid of one
of the two error sources in §5.1, namely linear interpolation, by the trapezoidal
rule, and 2) it can be used for many automotive dynamics models (cf. Ex. 1.1).

The trapezoidal rule is a basic technique in numerical integration [6], where∫ b

a
g(t) dt is approximated by (b − a) g(a)+g(b)

2 . For double integrator dynamics,
we apply the trapezoidal rule to the velocity v, and it is exact since v’s evolution
is linear. This allows us to express the position x in the bilinear form x = t · v0+v

2 ,
using the variables t (elapsed time), v0 (initial velocity), and v (current velocity).
Thus we can dispose of the sampling points and their interpolation (11) in §5.1.

We exploit this encoding for our automotive case studies such as Ex. 1.1.

6 Implementation and Experiments

We implemented, in Python, our MILP encodings of the STL semantics (§4)
and two model families, namely RHAs [32, Appendix C] and double integrator
dynamics (§5.2; multiple modes are not supported since our benchmarks do not
need them). The hyperparameter δ in our encoding is fixed at 0.1 for all bench-
marks. The resulting MILP constraints are solved by Gurobi Optimizer [20].
This prototype implementation is called STLts—STL trace synthesizer.

Our experiments are designed to address the following research questions.

RQ1 Assess the effect of variability bounds N (Prob. 3.2) on the performance.
RQ2 Compare the performance of STLts with optimization-based falsification,

and with SMT-based model checking.
RQ3 Assess the performance of STLts for real-world complex scenarios.

Optimization-Based Trace Synthesis for Complex STL Specifications 299

RQ4 Assess the performance of STLts in parameter mining (Prob. 3.3).

We used three classes of benchmarks: rear-end near collision (RNC), navi-
gation (NAV), and disturbance scenarios in ISO 34502 (ISO). In each class, we
have multiple STL specs, resulting in benchmarks such as RNC1, RNC2, etc.

Rear-End Near Collision (RNC1–3). As discussed in Ex. 1.1, these auto-
motive benchmarks are simplifications of the ISO benchmarks below. The spec
RNC1 is presented in Ex. 1.1. The system model (2) (see also MRNC in Ex. 2.4)
is double integrator dynamics (§5.2) and is shared by the benchmarks RNC1–3.

The other two specs RNC2, RNC3 are defined as follows, using formulas in (1):

RNC2 :≡ (
�(xf − xr ≥ 0)

)∧
♦[0,9]

(
(�[0,1]danger) ∧ (�[0,1]ar ≥ 1) ∧ (♦[1,5]¬danger)

)

trimming2 :≡ (♦danger) ⇒ (
(�[0,1]ar ≥ 1) U danger

)

RNC3 :≡ �(dyn inv ∧ trimming2) ∧ ♦[0,9]�[0,1]danger

(12)

Fig. 6. The RHA MNAV for NAV1–2

Navigation (NAV1–2). Here we use
a system model that adapts NAV-2
from [15]. The latter is a standard
example of an RHA [32, Appendix C],
used e.g. in [10].

Our system model MNAV is an
RHA that describes the motion of a
point robot in a 2 × 2 grid where each
region has a rectangular vector field,
with a time horizon T = 40. See Fig. 6.
We have 4 regions �1, . . . , �4, each asso-
ciated with rectangular bounds for
ẋ, ẏ and invariants; besides, we set an
unsafe region unsafeR (x ∈ [9, 10])
and a goal region goalR (x ∈ [4, 6]∧y ∈
[2, 5]). The robot starts from an initial position (x0, y0) where x0 ∈ [0, 3]∧y0 = 0.

We consider two specs: NAV1 :≡ ♦(�[0,3]((x, y) ∈ goalR)) ∧ �(x �∈ unsafeR)
and NAV2 ≡ �((x, y) ∈ �3 → ♦[0,3](x, y) ∈ �4). NAV1 is almost a standard
reach-avoid constraint, but it additionally requires the persistence to the goal
region for three seconds. Such specifications are not accommodated in many
control and model checking frameworks specialized in reach-avoid constraints
(see e.g. [10]). NAV2 is a response specification—the trigger (being in �3) must
be responded by moving to �4 within a three-second deadline. Such specs are
common in manufacturing; see e.g. [36].

ISO 34502 Disturbance Scenarios for Automated Driving (ISO1, ISO3,
. . . , ISO8). These benchmarks motivated the current work. As discussed in §1
(see Ex. 1.1), we obtained in [30] complex STL specs as the formalization of the

300 S. Sato et al.

disturbance scenarios in the ISO 34502 standard, but in our illustration efforts
by trace synthesis, we found that existing techniques such as optimization-based
falsification struggle.

Table 1. Disturbance scenarios in the ISO
34502 standard. Table from [21]

In our experiments, the sys-
tem model is similar to MRNC

(Ex. 1.1 and 2.4), while lateral
dynamics is added and the time
horizon is 10 time units here.
As for specs, we use seven STL
specs ISO1, ISO3, . . . , ISO8; these
are obtained in [30] as the formal-
ization of the disturbance scenar-
ios No. 1,3,. . . ,8 in the ISO 34502
standard for automated driving
vehicles. See Table 1. Scenario No.
2 was omitted in [30] since it
involves three vehicles; we omit Scenarios No. 9–24 since they are the same
with No. 1–8 except in the road shape.

Specifically, the specs ISOi follow the common format shown below [30]:

ISOi ≡ initSafe ∧ disturbi,
disturbi ≡ initialConditioni ∧ behaviourSVi ∧ behaviourPOVi

where SV refers to the subject (“ego”) vehicle and POV refers to the princi-
pal other vehicle. The component formulas initialConditioni, behaviourSVi

and behaviourPOVi vary for different scenarios (No. i). Going into their defini-
tions are beyond the scope of this paper; we highlight ISO5 as an example to
demonstrate the complexity of the specs ISOi.

initialCondition5 ≡ � behaviourSV5 ≡ leavingLane(SV, L)
behaviourPOV5 ≡ cutIn(POV, SV)

leavingLane(a, L) ≡ atLane(a, L) ∧ ♦(¬atLane(a, L))
cutIn(POV, SV, L) ≡ ¬sameLane(POV, SV, L) ∧ ♦

(
danger(SV, POV)

∧♦[0,minDanger](sameLane(SV, POV, L) ∧ aheadOf(SV, POV))
)

danger(SV, POV) ≡ �[0,minDanger]rssViolation(SV, POV)

(13)

The formulas not defined here are suitably defined atomic propositions.

Experiment Settings. Our implementation STLts is compared with the fol-
lowing tools: 1) a widely used optimization-based falsification tool Breach [11];
2) another falsification tool ForeSee [1,37] that emphasizes optimized treatment
of Boolean connectives in STL; 3) an MILP-based STL optimal control tool
bluSTL [14]; and 4) STLmc, an SMT-based bounded STL model checker [34].

The experiments were conducted on an Amazon EC2 c4.4xlarge instance
(2.9 GHz Intel Xeon E502666 v3, 30.0GB RAM) running Ubuntu Server 20.04.

Optimization-Based Trace Synthesis for Complex STL Specifications 301

RQ1: the Effect of the Variability Bound N .

Fig. 7. Execution time of
STLts for different var. bd. N ,
on ISO6

There is an obvious trade-off about the choice of a
variability bound N (Prob. 3.2): bigger N means
the search is more extensive, but it incurs greater
computational cost.

This tendency is confirmed in our experiments;
the result for the ISO6 benchmark is in Fig. 7 for
illustration. Here, synthesis was successful for N =
4 for the first time.

We also observe in the figure that computa-
tional cost is low when trace synthesis is unsuc-
cessful. This suggests the following strategy: we
start with small N and increment it if trace syn-
thesis is unsuccessful. We might waste time by trying too small N ’s; but the
wasted time should be small.

Table 2. Experimental results for trace
synthesis, showing execution time (sec-
onds). (N) for STLts is the first suc-
cessful bound. Timeout (t/o) is 600 s.

STLts Breach ForeSee bluSTL STLmc

RNC1 0.1 (3) 59.4 546.8 (¶) t/o
RNC2 0.3 (4) 9.3 104.3 14.3 t/o
RNC3 0.1 (3) 81.3 197.4 (¶) t/o

NAV1 32.5 (17) (∗) (∗) (‡) 16.5
NAV2 2.1 (11) 10.0

ISO1 0.4 (3) 8.9 t/o

(†) (†)

ISO3 0.2 (2) t/o t/o
ISO4 0.4 (2) t/o t/o
ISO5 9.9 (4) 31.2 435.8
ISO6 2.4 (4) t/o 58.9
ISO7 0.6 (3) 33.6 187.2
ISO8 1.5 (3) 38.8 t/o

Experimental Results, Overview.
Our experimental results are in summa-
rized in Table 2, where the best perform-
ers are highlighted by color.

We explain the missing entries. In (∗),
the tool is not applicable due to the non-
determinism of the benchmark. In (†),
we did not conduct experiments since
the performance comparison with STLts
is already clear with simpler RNC bench-
marks. In (‡), bluSTL does not support
multiple control modes. (¶) is because
bluSTL (at least its implementation avail-
able to us) does not support the until U
modality.

Overall, our STLts is clearly the best
performer in all benchmarks but one. The other tools time out, or takes tens
of seconds. For our motivation of illustrating STL specs by trace synthesis in
close interaction with users, tens of seconds is prohibitively long. The results
adequately demonstrate satisfactory performance of our algorithm, in trace syn-
thesis for complex STL specs.

RQ2: Comparison with Other Approaches. A summary of comparison is
in Table 3. The comparison with optimization-based falsification tools is as we
expected—their struggle with complex specs motivated this work (§1). Boolean
connectives in STL specs have been found problematic in falsification: this is
called the scale problem [36,37]. The results in Table 2 show that our benchmark
specs are even beyond the capability of ForeSee, a tool that incorporates Monte
Carlo tree search to specifically handle the scale problem. After all, one can say

302 S. Sato et al.

Table 3. Comparison of our approach (STLts) with baselines (Breach, ForeSee,
bluSTL, STLmc). Highlited cells represent positive features.

Feature STLts Breach/ForeSee bluSTL STLmc

Trace synthesis for
analyzing specs

Successful in all
benchmarks with
large STL formulas

Good for
falsifying models
but not good with
large STL formulas

- Timeout in most
of benchmarks

Timeout except
for linear dynamics

Model checking Complete up to
N and δ

- Control
synthesis with
guarantee

Complete up to
N

Parameter mining By MILP - By MILP By binary search

Continuous STL
semantics

Variable-interval
encoding

- Discretized - Discretized Variable-interval
encoding

Accommodated class
of nonlinear
dynamics

MILP-encodable,
can be
nondeterministic

Black-box,
deterministic

MILP-encodable,
can be
nondeterministic

SMT-encodable,
can be
nondeterministic

= full support; = partial support; = very limited support; - = not supported.

that falsification tools are aimed at complex models, while our STLts is aimed
at complex specs.

STLmc has a similar (“dual”) scope and utilizes a similar technique (stable
partitioning) to our STLts; the main difference is that STLmc is SMT-based
while STLts is MILP-based. Therefore STLts accommodates a smaller class of
models, but it can be faster on them exploiting numeric optimization. Table 2
suggests the advantage of STLts for common STL specs in manufacturing.

RQ3: Performance in Real-World Scenarios. For this RQ, we refer to
STLts’s performance on the ISO benchmarks. Illustrating the specs ISOi by trace
synthesis is a real-world problem about safety standards for automated driving
(§1), and Table 2 shows that STLts has sufficient performance and scalability to
handle complex specs there (see (13)).

Fig. 8. STLts for parameter synthesis. Red
is execution time (axis left, seconds); blue
is the maximum p (axis right). (Color figure
online)

RQ4: Performance in Parameter
Mining. We conducted parameter
mining experiments with the ISO8
benchmark. Its specification has a
subformula fasterThan(SV, POV, p)
that requires that SV’s velocity is
bigger than POV’s by at least a
parameter p. We used STLts to solve
Prob. 3.3, that is, to find the max-
imum p for which a satisfying trace
exists.

Figure 8 shows the results with
varying variability bound N . Param-
eter mining is generally more expensive than trace synthesis. This is because
the former has a nontrivial objective function (namely p in this example), while

Optimization-Based Trace Synthesis for Complex STL Specifications 303

the latter does not (it is thus a constraint satisfaction problem). We observe
the optimization with N ≥ 10 resulted in a timeout. The tendency, much like
in trace synthesis, is that the result (max p) improves but execution time gets
larger as N becomes bigger (there are some exceptions such as N = 8, 9 though).
Taking the same strategy as above (incrementing N), it takes roughly 10 min
to obtain a largely converged value (∼ 14.9 for the maximum p). Overall, we
believe this is a realistic performance for practical usage.

References

1. ForeSee falsification solver (2021). https://github.com/choshina/ForeSee
2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system

falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

4. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

5. Asghari, M., Fathollahi-Fard, A.M., Mirzapour Al-e hashem, S.M.J., Dulebenets,
M.A.: Transformation and linearization techniques in optimization: a state-of-the-
art survey. Mathematics 10(2), 283 (2022). https://doi.org/10.3390/math10020283

6. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York, second
edn. (1989). http://www.worldcat.org/isbn/0471500232

7. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 51:1–51:30 (2019).
https://doi.org/10.1145/3290364

8. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

9. Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining signal tem-
poral logic specifications. Inf. Comput. 289(Part), 104957 (2022). https://doi.org/
10.1016/J.IC.2022.104957

10. Bu, L., Frehse, G., Kundu, A., Ray, R., Shi, Y., Zaffanella, E.: Arch-comp22 cate-
gory report: Hybrid systems with piecewise constant dynamics and bounded model
checking. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 44–57. EasyChair
(2022). https://doi.org/10.29007/lnzf

11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

12. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

https://github.com/choshina/ForeSee
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.3390/math10020283
http://www.worldcat.org/isbn/0471500232
https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.29007/lnzf
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19

304 S. Sato et al.

13. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

14. Donzé, A., Raman, V.: BluSTL: controller synthesis from signal temporal logic
specifications. In: ARCH14-15. 1st and 2nd International Workshop on Applied
veRification for Continuous and Hybrid Systems, pp. 160–150. https://doi.org/10.
29007/g39q

15. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: 2011
IEEE/ACM Second International Conference on Cyber-Physical Systems, pp. 22–
31. IEEE (2011). https://doi.org/10.1109/ICCPS.2011.24

16. Ernst, G., et al.: ARCH-COMP 2021 category report: falsification with valida-
tion of results. In: Frehse, G., Althoff, M. (eds.) 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21), Brussels, Bel-
gium, July 9, 2021. EPiC Series in Computing, vol. 80, pp. 133–152. EasyChair
(2021). https://doi.org/10.29007/XWL1

17. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

18. Glover, F.: Improved linear integer programming formulations of nonlinear integer
problems. Manag. Sci. 22, 455–460 (1975). https://doi.org/10.1287/mnsc.22.4.455

19. Gupte, A., Ahmed, S., Cheon, M.S., Dey, S.: Solving mixed integer bilinear prob-
lems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013). https://
doi.org/10.1137/110836183

20. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

21. Road vehicles - Test scenarios for automated driving systems - Scenario based
safety evaluation framework. Standard, International Organization for Standard-
ization, Geneva, CH (2022)

22. Kurtz, V., Lin, H.: A more scalable mixed-integer encoding for metric temporal
logic. IEEE Control. Syst. Lett. 6, 1718–1723 (2022). https://doi.org/10.1109/
LCSYS.2021.3132839

23. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal
logic. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 343–354 (2021). https://doi.org/10.1109/ASE51524.2021.
9678719

24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

25. Pedrielli, G., et al.: Part-X: A family of stochastic algorithms for search-based
test generation with probabilistic guarantees. IEEE Trans. Autom. Sci. Eng. 1–22
(2023). https://doi.org/10.1109/TASE.2023.3297984

26. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal
logic. In: 2018 IEEE Real-Time Systems Symposium (RTSS), pp. 208–217. IEEE,
Nashville, TN (2018). https://doi.org/10.1109/RTSS.2018.00038

27. Rabinovich, A.M.: On the decidability of continuous time specification formalisms.
J. Log. Comput. 8(5), 669–678 (1998). https://doi.org/10.1093/logcom/8.5.669

28. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli,
A.L., Seshia, S.A.: Model predictive control with signal temporal logic specifica-
tions. In: 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles,

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/g39q
https://doi.org/10.29007/g39q
https://doi.org/10.1109/ICCPS.2011.24
https://doi.org/10.29007/XWL1
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1287/mnsc.22.4.455
https://doi.org/10.1137/110836183
https://doi.org/10.1137/110836183
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/LCSYS.2021.3132839
https://doi.org/10.1109/LCSYS.2021.3132839
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1109/ASE51524.2021.9678719
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/TASE.2023.3297984
https://doi.org/10.1109/RTSS.2018.00038
https://doi.org/10.1093/logcom/8.5.669

Optimization-Based Trace Synthesis for Complex STL Specifications 305

CA, USA, December 15-17, 2014, pp. 81–87. IEEE (2014). https://doi.org/10.
1109/CDC.2014.7039363

29. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 239–248. ACM,
Seattle Washington (2015). https://doi.org/10.1145/2728606.2728628

30. Reimann, J., et al.: Temporal logic formalisation of ISO 34502 critical scenarios:
modular construction with the RSS safety distance. In: Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing (SAC 2024) to appear (2024).
arXiv:2403.18764

31. Roehm, H., Heinz, T., Mayer, E.C.: STLInspector: STL Validation with Guar-
antees. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
225–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 11

32. Sato, S., An, J., Zhang, Z., Hasuo, I.: Optimization-based model checking and trace
synthesis for complex STL specifications (extended version) (2024). available on
arXiv

33. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol.
5850, pp. 532–546. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-05089-3 34

34. Yu, G., Lee, J., Bae, K.: Stlmc: Robust STL model checking of hybrid systems
using SMT. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part I. LNCS, vol. 13371, pp. 524–537. Springer (2022). https://doi.org/10.1007/
978-3-031-13185-1 26

35. Zhang, Z., Arcaini, P.: Gaussian process-based confidence estimation for hybrid
system falsification. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 330–348. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 18

36. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

37. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using monte carlo tree search guided by QB-robustness. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8 29

https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1145/2728606.2728628
http://arxiv.org/abs/2403.18764
https://doi.org/10.1007/978-3-319-63387-9_11
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-031-13185-1_26
https://doi.org/10.1007/978-3-031-13185-1_26
https://doi.org/10.1007/978-3-030-90870-6_18
https://doi.org/10.1007/978-3-030-90870-6_18
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-81685-8_29

306 S. Sato et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Optimization-Based Model Checking and Trace Synthesis for Complex STL Specifications
	1 Introduction
	2 Preliminaries
	2.1 Signal Temporal Logic
	2.2 Finite Variability

	3 Problem Formulation
	4 Variable-Interval Encoding of STL to MILP
	4.1 -Stable Partitions
	4.2 Variable-Interval MILP Encoding

	5 System Models and Their MILP Encoding
	5.1 HAs with Closed-Form Solutions
	5.2 HAs with Double Integrator Dynamics

	6 Implementation and Experiments
	References

