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Abstract. Opacity serves as a critical security and confidentiality prop-
erty, which concerns whether an intruder can unveil a system’s secret
based on structural knowledge and observed behaviors. Opacity in timed
systems presents greater complexity compared to untimed systems, and
it has been established that opacity for timed automata is undecidable.
However, the original proof cannot be applied to decide the opacity of
one-clock timed automata directly. In this paper, we explore three types
of opacity within timed automata: language-based timed opacity, initial-
location timed opacity, and current-location timed opacity. We begin
by formalizing these concepts and establishing transformation relations
among them. Subsequently, we demonstrate the undecidability of the
opacity problem for one-clock timed automata. Furthermore, we offer a
constructive proof for the conjecture regarding the decidability of opacity
for timed automata in discrete-time semantics. Additionally, we present
a sufficient condition and a necessary condition for the decidability of
opacity in specific subclasses of timed automata.

Keywords: Opacity · Timed opacity · Timed automata

1 Introduction

Opacity is a critical security and confidentiality property concerning information
flow within systems, often utilized to describe security and privacy concerns
across various scenarios. In general, it aims at safeguarding the secret information
within a system from an intruder who has knowledge of the system structure
but only partial observability of its behaviours.

Considering a Labelled Transition System (LTS), the secret information
within it can be a set of system traces or states. An intruder observes the sys-
tem behaviours, and based on the partial observations of system behaviours, the
intruder estimates whether the actual behaviours contain secret information.
The system is deemed opaque if for every secret run, there exists a non-secret
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run exhibiting identical observations. Specifically, opacity is commonly catego-
rized into two types based on the nature of the secret information: language-
based opacity and state-based opacity. A system is called language-opaque if
an intruder with partial observability can never determine whether a trace of
the system is secret based on the observations. A system is termed initial-state
opaque if an intruder is unable to determine whether a trace starts from a secret
state, and it is termed current-state opaque if an intruder is unable to determine
whether the current trace reaches a secret state. Extensive research has been
conducted on untimed systems, such as Discrete Event Systems (DES) mod-
eled by finite-state automata. The opacity problem of finite-state automata has
been proved decidable in PSPACE [24,25]. We refer to [18] for a comprehensive
survey.

However, timed systems introduce a level of complexity beyond untimed sys-
tems, as they encompass not only untimed event sequences but also the times-
tamps associated with actions or events. Moreover, it is recognized that time
poses a potential security vulnerability for systems [10,14,19]. Therefore, con-
sidering that unobservable events also take a span of time, the opacity problem
of timed systems becomes intriguing and considerably more intricate.

Fig. 1. A simple example for the
opacity problem of timed systems

A simple example depicted in Fig. 1 illus-
trates an opacity problem inherent in timed
systems. In this scenario, Alice, Bob, and Car-
los can exchange messages, each with varying
time durations between pairs. For instance,
the transmission time between Alice and Bob,
as well as vice versa, ranges from 1 to 4 time
units, whereas between Alice and Carlos, it
spans 1 to 2 time units. Let us consider Car-
los as a secret participant within the system.
Meanwhile, an intruder named Eve, possessing only partial observability, can
solely monitor the behaviors of Alice and Bob. For instance, consider a situation
that the current real message passing is Alice 1.2−−→ Carlos 2.1−−→ Bob. With partial
observability, what Eve observed is Alice 3.3−−→ Bob. The opacity problem thus
questions whether Eve can deduce Carlos’s involvement in the message passing
process, thereby exposing the secret behaviors. If Eve remains unaware of Car-
los’s participation, we conclude that the timed system is opaque to the intruder
regarding the secret role of “Carlos” and the clandestine activities. This timed
system is deemed non-opaque because Eve can ascertain the presence of a third
participant when Eve observes that the time taken to pass messages between
Alice and Bob exceeds 4 units. In essence, this scenario can be considered a
special case of language-based opacity of timed systems if we view the dashed
secret behaviors as a secret timed language.

Timed automata (TA) [2], which extend finite-state automata with clock vari-
ables, are widely used as a formal model for timed systems. In a seminal work by
F. Cassez [11], it was proved that the opacity problem is undecidable for TA and
even for deterministic timed automata (DTA). In the proof of the undecidability
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for L-opacity1 of nondeterministic timed automata (NTA), Cassez reduced the
universality problem of NTA to a specific instance of the L-opacity problem of
NTA. Since the universality problem for NTA is known to be undecidable [2],
it logically follows that the opacity problem for NTA is also undecidable. How-
ever, in the case of one-clock timed automata (OTA), where only a single clock
is involved, the universality problem becomes decidable [1]. Consequently, the
reduction does not yield a conclusion on the opacity of OTA. Additionally, at
the end of [11], a conjecture is given that the opacity problem of TA is decid-
able in the discrete-time semantics. Therefore, all these factors serve as strong
motivations for us to revisit the opacity problem of timed automata.

In this paper, we investigate three types of the opacity of timed automata,
i.e., language-based timed opacity (LBTO), initial-location timed opacity (ILTO),
and current-location timed opacity (CLTO). These concepts are adaptations of
language-based opacity, initial-state opacity, and current-state opacity to the
realm of timed automata, respectively. Our main contributions are as follows.

– We formalize and compare the three types of timed opacity, and present the
transformations among them, i.e., ILTO and CLTO can be reduced to LBTO for
TA while the inverse reductions are restricted to DTA. (Sect. 3)

– We provide proof of the undecidability of the opacity problem of OTA. Fol-
lowing the idea in [11], it is achieved by reducing the universality problem
of OTA with epsilon transitions to an instance of CLTO problem of OTA.
(Sect. 4.1)

– We confirm the conjecture regarding the decidability of opacity for TA
in discrete-time semantics by transforming the opacity problem into the
language inclusion problem of nondeterministic finite-state automata with
epsilon transitions. (Sect.4.2)

– We present both a sufficient condition and a necessary condition for the decid-
ability of the opacity problem of specific subclasses of TA. Given a subclass
of TA, a sufficient condition requires that the subclass is closed under prod-
uct, complementation, and projection, and a necessary condition is that the
universality problem of the subclass is decidable. (Sect. 4.3)

Related Work. Opacity problems have been extensively studied in Discrete
Event Systems community [7,13,16,20,23,23,25,28,29]. We name just a few
related works here. A comprehensive introduction to verification and enforce-
ment of opacity can be found in [18]. Contrary to finite-state automata, which
enjoy decidability in opacity, it has been proven that the opacity problem is
undecidable for TA [11]. Therefore, various types of opacity for subclasses of
TA with different restrictions have been investigated. The opacity problem of
a subclass named Event-Recording Automata (ERA) [3] has also been proved
undecidable in [11]. Later in [26,27], the language-based and state-based opacity
problems have been proved decidable for RTA. A more comprehensive study on
state-based opacity of RTA is given in [31], showing that the decision complex-
ity is 2-EXPTIME. A kind of bounded-timed opacity is studied in [4]. Recently,
1 It is equivalent to the current-location timed opacity (CLTO) defined in Sect. 3.
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in [5,6], André et al. define a kind of timed opacity only considering the dura-
tion time of the executions but not the events, which is different from the classic
concepts in [11]. There are also some works on the approximate opacity of Cyber-
Physical Systems [21,30].

2 Preliminaries

In this section, we review the concepts of timed automata and recall several
sub-classes. Let N, R and R≥0 denote the set of natural, real and non-negative
real numbers, respectively. The set of Boolean values is denoted as B = {�,⊥},
where � stands for true and ⊥ for false. Let Σ, named alphabet, be a finite set
of events or actions. Let ε be the special empty action and let Σε = Σ ∪ {ε}.

In what follows, suppose a symbol A represents a class of automata, we write
ε-A for the automata with epsilon transitions. For instance, we write ε-TA for TA
with epsilon transitions. Also, epsilon transitions are denoted as ε-transitions.

2.1 Timed Words, Timed Languages and Timed Automata

A timed word is a finite sequence of timed actions ω = (σ1, t1)(σ2, t2) · · ·
(σn, tn) ∈ (Σ × R≥0)∗, where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn are global timestamps, and
timed action (σi, ti) represents action σi occurs at time ti for 1 ≤ i ≤ n. The
length of the timed word |ω| = n and the length of ε is 0. Particularly, a timed
word with empty action ε is a sequence of timed actions and the empty action ε
over Σε ×R≥0. A timed language L is a set of timed words, i.e., L ⊆ (Σ ×R≥0)∗.

Definition 1 (Projection). Given a subset Σo ⊆ Σ, a projection PΣo
on timed

words w.r.t Σo is a function (Σ × R≥0)∗ → (Σo × R≥0)∗ s.t.

PΣo
(ε) = ε

PΣo
((σ, t) · ω) =

{
(σ, t) · PΣo

(ω) if σ ∈ Σo

PΣo
(w) otherwise.

Additionally, we extend PΣo
to timed languages, i.e., given a timed language

L, we have PΣo
(L) = {PΣo

(ω) | ω ∈ L}.

Example 1. Given a timed word ω = (σ1, 2)(σ2, 3.2)(σ1, 5.7)(σ3, 7), we have
P{σ1}(ω) = (σ1, 2)(σ1, 5.7) and P{σ2,σ3}(ω) = (σ2, 3.2)(σ3, 7). Note that, for
timed words with empty action ε, say ω′ = (σ1, 2)(ε, 3.2)(σ1, 5.7), we also have
P{σ1}(ω′) = (σ1, 2)(σ1, 5.7). �

Timed automata (TA) [2] extend finite-state automata with a finite set of
clock variables. In each state, all clocks increase at the same rate, and a set of
clocks can be reset to zero at each transition.

Let C be the set of clock variables and let Φ(C) denote the set of clock
constraints of the form φ:: = � | c �	 m | φ ∧ φ, where m ∈ N and
�	 ∈ {=, <,>,≤,≥}. A clock valuation v : C → R≥0 is a function assigning
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a non-negative real value to each clock c ∈ C. v ∈ φ represents that the clock
valuation v satisfies the clock constraint φ, i.e. φ evaluates to true on v. For
d ∈ R≥0, let v + d be the clock valuation which maps every clock c ∈ C to the
value v(c) + d, and for a set R ⊆ C, let [R → 0]v be the clock valuation which
resets all clock variables in R to 0 and agrees with v for every clock in C\R.

Fig. 2. An illustration for TA A (left side) and ε-TA Aε (right side).

Definition 2 (Timed automata). A (nondeterministic) timed automaton
(NTA) is a 6-tuple A = (Σ,Q,Q0, Qf , C,Δ), where Σ is the alphabet; Q is
a finite set of locations; Q0 is a set of initial locations; Qf is a set of accepting
locations; C is a finite set of clocks; and Δ ⊆ Q×Σ×Φ(C)×2C ×Q is a transition
relation.

A transition (q, σ, φ,R, q′) ∈ Δ allows a jump from location q to q′ if σ occurs
and the constraint φ is satisfied by the current clock valuation. After that, the
clocks in R are reset to zero, while other clocks remain unchanged.

A state of A is a pair (q, v), where q ∈ Q is a location and v is a clock
valuation. A run ρ of A over a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is a
sequence ρ = (q0, v0)

τ1,σ1−−−→ (q1, v1)
τ2,σ2−−−→ · · · τn,σn−−−−→ (qn, vn), satisfying (1) q0 is

an initial location and v0(c) = 0 for each clock c ∈ C; (2) for all 1 ≤ i ≤ n, there
is a transition (qi−1, σi, φi,Ri, qi) such that (vi−1 + τi) ∈ φi and vi = [Ri →
0](vi−1+τi); (3) τ1 = t1 and τi = ti −ti−1 for 2 ≤ i ≤ n. Thus, each τi represents
the delay time between the transitions. A run ρ is an accepting run if qn ∈ Qf .

The trace of a run ρ is the corresponding timed word trace(ρ) = ω or the
empty timed word ε if ρ = (q0, v0). Let TrA(q0) be the set of all traces of runs
from an initial location q0 and let TrA(Q0) be the set of traces of all traces
of runs from any initial locations in Q0. Additionally, given a location q and a
subset Q′ ⊆ Q, let TrA(Q0, q) be the set of all traces of all runs starting from
Q0 and ending in location q, and TrA(Q0, Q

′) be the set of all traces of all runs
starting from Q0 and ending in any locations in Q′. A timed automaton is a
deterministic timed automaton (DTA) if |Q0| = 1 and there is at most one run
for each timed word.

Given a timed automaton A, its generated timed language is the set of traces
of runs of A, i.e. L(A) = TrA(Q0). The recognized timed language Lf (A) is the
set of traces of accepting runs, i.e. Lf (A) = TrA(Q0, Qf ).

An ε-NTA Aε = (Σε, Q,Q0, Qf , C,Δ) extends an NTA with ε-transitions in
the form of (q, ε, φ,R, q′). It can recognize timed words with ε over Σε × R≥0.
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The special empty action ε is viewed as invisible by default. Note that the timed
language of an ε-NTA Aε is still a set of timed words defined on (Σ ×R≥0)∗ [9].

Example 2. TA A on the left side of Fig. 2 has the unique clock c, where the
alphabet Σ = {σ1, σ2, σ3}. Timed word ω = (σ2, 2)(σ3, 3) is accepted by A,
since there is a run ρ = q0

2,σ2−−−→ q2
1,σ3−−−→ q3 ending in the accepting location q3.

The recognized timed language Lf (A) = {(σ1, t1)(σ3, t2)|0 ≤ t1 ≤ 1 ∧ 0 ≤ t2 ≤
2} ∪ {(σ2, t1)(σ3, t2) | 0 ≤ t1 ≤ 2 ∧ 0 ≤ t2 − t1 ≤ 1}.

The ε-TA Aε with one clock c in Fig. 2 comes from [9]. Its generated timed lan-
guage L(Aε) is equivalent to its recognized timed language Lf (Aε), i.e., L(Aε) =
Lf (Aε) = {(σ1, t1) · · · (σn, tn) ∈ (Σ × R≥0)∗ | ∀i ≥ 0, ti ∈ 2N ∧ ti ≤ ti+1}. It is
clear that PΣ(L(Aε)) = L(Aε) and PΣ(Lf (Aε)) = Lf (Aε). �

2.2 Expressiveness and Decidability of Timed Automata

Unlike finite-state automata, TA are not closed under complementation. More-
over, the universality problem (i.e., whether Lf (A) = (Σ × R≥0)∗), inclu-
sion problem (i.e., whether Lf (A1) ⊆ Lf (A2)), and equivalence problem (i.e.,
whether Lf (A1) = Lf (A2)) are proven undecidable for TA, nonetheless, decid-
able for DTA [2]. Consequently, various subclasses of TA with different restric-
tions have been introduced and extensively studied. In the following discussion,
we will revisit some of these subclasses and provide a summary of their expres-
siveness.

We denote one-clock timed automata as OTA and refer to nondeterministic
and deterministic OTA as NOTA and DOTA, respectively. The expressive power
of NOTA strictly exceeds that of DOTA, i.e., DOTA ⊂ NOTA. However, NOTA
and DTA are incomparable. On one hand, there exist DTA languages that elude
recognition by any NOTA. Conversely, NOTA lacks closure under complemen-
tation, while DTA retains closure. There exist NOTA languages that cannot be
captured by any DTA. OTA with ε-transitions is denoted as ε-OTA.

Real-timed automata (RTA) [12] is a subclass of timed automata with a
single clock resetting at every transition, resulting in RTA ⊂ DOTA. Notably,
any nondeterministic RTA can be determinized, thereby endowing deterministic
RTA with the same expressive power as their nondeterministic counterparts.
Additionally, RTA exhibits closure properties under product, complementation,
and projection, as demonstrated in [12,27].

Event-recording automata (ERA) [3] is a kind of timed automata associating
each action σ with a clock to record the time length from the last occurrence of
σ to the current. As ERA is a class of determinizable timed automata, we have
ERA ⊂ DTA. However, ERA and RTA are incomparable. This distinction arises
because RTA may accept languages consisting of two actions separated by an
interval with integer length while ERA may not.

As shown in [2], NTA ⊂ ε-NTA, since that ε-transitions will increase the
expressive power if they reset clocks [9]. For example, in Fig. 2, the timed lan-
guage of Aε can not be represented by any NTA.
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In summary, the comparable expressive power among them is in the following
order RTA ⊂ DOTA ⊂ DTA ⊂ NTA ⊂ ε-NTA. Note that we will ignore the
character ‘N’ in general, such as NTA = TA and NOTA = OTA.

3 Opacity Problems of Timed Automata

In this section, we investigate three types of timed opacity, i.e., language-based
timed opacity (LBTO), initial-location timed opacity (ILTO) and current-location
timed opacity (CLTO), and demonstrate the transformations between them.

3.1 Language-Based and Location-Based Timed Opacity

Given a TA A = (Σ,Q,Q0, Qf , C,Δ), an observable alphabet Σo ⊆ Σ, and a
secret timed language Ls, we define LBTO as follows.

Definition 3 (Language-based timed opacity, LBTO). A is language-based
(strongly) timed opaque w.r.t Σo and Ls iff

∀ω ∈ L(A) ∩ Ls,∃ω′ ∈ L(A) \ Ls s.t. PΣo
(ω) = PΣo

(ω′) (1)

which is equivalent to PΣo
(L(A) ∩ Ls) ⊆ PΣo

(L(A) \ Ls).

LBTO requires that for each secret trace, there exists a non-secret trace such
that their observations w.r.t the observable alphabet Σo are identical.

Let us consider a secret set of locations Qs ⊆ Q within A, instead of a secret
timed language Ls. We define ILTO and CLTO as follows.

Definition 4 (Initial-location timed opacity, ILTO). A is initial-location
timed opaque w.r.t Σo and Qs ⊆ Q0 iff

∀ω ∈ TrA(Qs),∃ω′ ∈ TrA(Q0 \ Qs) s.t. PΣo
(ω) = PΣo

(ω′) (2)

which is equivalent to PΣo
(TrA(Qs)) ⊆ PΣo

(TrA(Q0 \ Qs)).

ILTO requires that for each trace starting from a secret location, there exists
a trace starting from a non-secret location such that their observations w.r.t Σo

are identical.

Definition 5 (Current-location timed opacity, CLTO). A is current-location
timed opaque w.r.t Σo and Qs ⊆ Q iff

∀ω ∈ TrA(Q0, Qs),∃ω′ ∈ TrA(Q0, Q \ Qs) s.t. PΣo
(ω) = PΣo

(ω′) (3)

which is equivalent to PΣo
(TrA(Q0, Qs)) ⊆ PΣo

(TrA(Q0, Q \ Qs)).

CLTO requires that for each trace reaching a secret location, there exists a
trace reaching a non-secret location such that their observations w.r.t Σo are
identical.
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Example 3. In Fig. 2, suppose Σo = {σ3} and Ls = {(σ2, t1)(σ3, t2) | 0 ≤ t1 ≤
2 ∧ 0 ≤ t2 ≤ 3}, then A is not LBTO w.r.t Ls and Σo: If the intruder observes a
‘σ3’ at time 3, they can infer that the previous action must have been ‘σ2’ rather
than ‘σ1’, as there is no non-secret trace with an observation of ‘σ3’ at time 3.

If we consider the opacity of the corresponding untimed system, the system
language is L = {σ1, σ2, σ1σ3, σ2σ3} and the secret language is Ls = {σ2σ3}. If
the current observation is σ3, the intruder cannot ascertain whether the actual
behavior is σ1σ3 or σ2σ3. Therefore, the corresponding untimed system exhibits
opacity. This illustrates that timed opacity presents a distinct and intriguingly
more complex challenge compared to untimed systems. �

3.2 Transformation Between LBTO, ILTO and CLTO

We first present the transformations from ILTO to LBTO and from CLTO to LBTO
with TA. Subsequently, we elucidate the reverse transformations from LBTO to
ILTO and CLTO restricting to DTA.

Drawing from a common assumption in untimed systems’ opacity, where a
secret language is recognized by a finite-state automaton, we suppose that Ls

can be recognized by a secret TA As, i.e. Ls = Lf (As). The assumption is
reasonable, given that every finite set of timed words can be modelled by a TA
and every regular timed language can be recognized by a TA.

From ILTO to LBTO. Given a TA A = {Σ,Q,Q0, Qf , C,Δ}, and a secret subset
of locations Qs ⊆ Q0, the ILTO problem w.r.t Qs and Σo formalized by (2) can
be transformed to an LBTO problem as follows.

We first construct a TA As = {Σ,Q,Q′
0, Q

′
f , C,Δ}. Let Q′

0 = Qs and mark
all locations as the accepting locations Q′

f = Q. Then we have L(As) = Lf (As).
Note that TrA(Qs) = TrAs

(Qs). Let Ls = Lf (As) be the secret timed language.
Then we have

L(A) ∩ Ls = L(A) ∩ Lf (As) = L(A) ∩ L(As) = L(As) = TrAs
(Qs) = TrA(Qs)

L(A) \ Ls = L(A) \ Lf (As) = L(A) \ L(As) = TrA(Q0) \ TrAs
(Qs)

= TrA(Q0) \ TrA(Qs) = TrA(Q0 \ Qs)

Hence, it is transformed to the following LBTO problem of A w.r.t Ls and Σo

∀ω ∈ L(A) ∩ Ls,∃ω′ ∈ L(A) \ Ls s.t. PΣo
(ω) = PΣo

(ω′)

��
From CLTO to LBTO. Given a TA A = {Σ,Q,Q0, Qf , C,Δ}, and Qs ⊆ Q, the
CLTO problem w.r.t Qs and Σo formalized by (3) can be transformed to an LBTO
problem as follows.

We can construct a TA A′ = {Σ,Q,Q0, Q
′
f , C,Δ} which is a copy of A

except that the accepting locations are changed from Qf to Qs, i.e. Q′
f = Qs.
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Fig. 3. The transformation between LBTO, ILTO, and CLTO.

Therefore, we have L(A) = L(A′), i.e., TrA(Q0) = TrA′(Q0). Let Ls = Lf (A′)
be the secret language, then we have

L(A′) ∩ Ls = Ls = TrA′(Q0, Q
′
f ) = TrA′(Q0, Qs)

L(A′) \ Ls = TrA′(Q0) \ TrA′(Q0, Q
′
f ) = TrA′(Q0, Q \ Q′

f ) = TrA′(Q0, Q \ Qs)

Hence, it is transformed to the following LBTO problem of A′ w.r.t Ls and Σo

∀ω ∈ L(A′) ∩ Ls,∃ω′ ∈ L(A′) \ Ls s.t. PΣo
(ω) = PΣo

(ω′)

��
From LBTO to CLTO. Given a DTA A = {Σ,Q,Q0, Qf , C,Δ}, and a secret DTA
As and let Ls = Lf (As), the LBTO problem w.r.t Ls and Σo formalized by (1)
can be transformed to a CLTO problem as follows.

We construct a timed automaton A′ = (Σ,Q′, Q′
0, Q

′
f , C′,Δ′) in the following

steps. We first make a copy of A as A′′ = (Σ,Q,Q0, Q
′′
f , C,Δ) and let all locations

be the accepting locations Q′′
f = Q. We have Lf (A′′) = L(A). Since DTA are

closed under product and complementation [2], we construct a product TA Ap =
A′′ × As and then construct a product TA A′

p = A′′ × Ap. Therefore, we have

Lf (Ap) = Lf (A′′) ∩ Lf (As) = L(A) ∩ Ls

Lf (A′
p) = Lf (A′′) ∩ (L(A) ∪ Ls) = L(A) ∩ Ls = L(A) \ Ls.

Let A′ = Ap ∪ A′
p and let Qs be the set of accepting locations of Ap. We denote

by Q
A′

p

f the set of accepting locations of A′
p. It is clear that Q

A′
p

f ⊂ Q′ \ Qs.
Therefore, it is transformed to the following CLTO problem w.r.t Qs and Σo

∀ω ∈ TrA′(Q′
0, Qs),∃ω′ ∈ TrA′(Q′

0, Q
A′

p

f ) s.t. PΣo
(ω) = PΣo

(ω′).

��
From LBTO to ILTO. The reduction is similar to the above reduction from LBTO
to CLTO. Similar to [28], we suppose that Ls and L(A) \ Ls are both prefix-
closed. Then we can build two DTA A1 and A2 such that L(A1) = Lf (Ap) and
L(A2) = Lf (A′

p). Let A′ = A1 ∪ A2 and let the secret set Qs be the initial
location set of A1. Then, the LBTO problem is transformed to the following ILTO
problem w.r.t Qs and Σo

∀ω ∈ TrA′(Qs),∃ω′ ∈ TrA′(Q′
0 \ Qs) s.t. PΣo

(ω) = PΣo
(ω′).

��
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Figure 3 summarizes the transformation between LBTO, ILTO, and CLTO. Since
the complementation operation is involved in the transformations from LBTO to
CLTO and to ILTO, we argue that the two transformations do not hold for general
TA. Nevertheless, it is enough for supporting the results presented in Sect. 4.

4 Decidability and Undecidability of Timed Opacity
Problems

This section serves to establish key results regarding the undecidability of opacity
problems for OTA, the decidability of opacity problems for TA in discrete-time
semantics, and a sufficient condition and a necessary condition for the decid-
ability of opacity problems within various subclasses of TA. Consequently, our
findings bridge a gap in the decidability of timed opacity problems and provide
constructive proof of the conjecture proposed in [11]. These conditions delineate
the system properties essential for designing opaque timed systems.

4.1 Undecidability of Opacity Problems of OTA

We first consider the CLTO problem of OTA and prove its undecidability. More-
over, our proof also holds for DOTA. Therefore, based on the transformations
shown in Sect. 3.2, the three types of opacity problems of DOTA, OTA, and
ε-OTA are all proven undecidable. The detailed proofs are presented as follows.

Lemma 1. Given a OTA A = (Σ,Q,Q0, Qf , {c},Δ) and an observable alphabet
Σo ⊂ Σ, there is an ε-OTA A′ s.t. A is CLTO iff A′ is CLTO.

Proof. The ε-OTA A′ = (Σ′ ∪ {ε}, Q,Q0, Qf , {c},Δ′) can be built as follows.
Build a new alphabet Σ′ s.t. Σo ⊂ Σ′ ⊂ Σ. Suppose Σ \ Σ′ = {σ′

1, σ
′
2, · · · , σ′

n},
the transition set Δ′ is constructed from Δ by replacing σ′

i with ε for each
transition (q, σ′

i, φ,R, q′) ∈ Δ.
Since each σ′

i is an unobservable action, i.e., σ′
i /∈ Σo, it is equivalent to ε

w.r.t the timed opacity problem with projection PΣo
. After replacing the corre-

sponding transitions with ε-transitions, checking CLTO of OTA A is equivalent
to checking CLTO of ε-OTA A′. ��

The following lemma follows the proof idea in [11]. The difference is that we
reduce the universality problem of ε-NTA, instead of NTA, to a CLTO problem.

Lemma 2. Given an ε-NTA Aε = {Σ ∪ {ε}, Q,Q0, Qf , C,Δ}, there is an NTA
A′ s.t. the universality problem of Aε is equivalent to the CLTO problem of A′.

Proof. Given ε-NTA Aε, the universality problem asks if Lf (Aε) = (Σ ×R≥0)∗.
We first introduce a new non-accepting location q̃ and then build its complete
ε-NTA Ãε, where the location set Q̃ = Q ∪ {q̃} and the accepting locations are
unchanged. We have Lf (Ãε) = Lf (Aε) and L(Ãε) = (Σ × R≥0)∗. Based on Ãε,
we build an NTA A′ = (Σ′, Q̃, Q0, Qf , C,Δ′) by introducing an action a �∈ Σ, i.e.,
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Σ′ = Σ ∪ {a} and replacing all ε-transitions in Ãε with a-transitions. It is clear
that PΣ(L(A′)) = L(Ãε) = (Σ ×R≥0)∗ and PΣ(Lf (A′)) = PΣ(Lf (Ãε)). Let the
secret set Qs = Q̃ \ Qf and the observable alphabet Σo = Σ, the universality
problem of Aε equals to the CLTO problem of A′ w.r.t Qs and Σo. ��

The proof of Lemma 2 is not related to the number of clocks, so the univer-
sality problem of ε-OTA can be reduced to the CLTO problem of OTA. According
to [1], the former problem is undecidable.

Theorem 1. The CLTO problems of OTA and ε-OTA are undecidable.

Note that the reduction in Lemma 1 does not depend on the nondeterministic
property. Therefore, it works for DOTA, i.e., given a DOTA A, there is an ε-
OTA A′ s.t. A is CLTO iff A′ is CLTO. Then by Theorem 1, the CLTO of DOTA
is also undecidable. Depending on the transformation in Sect. 3.2, we have the
conclusion.

Theorem 2. The LBTO, ILTO, and CLTO problems of DOTA, OTA, and ε-OTA
are all undecidable.

4.2 Decidability in the Discrete-Time Semantics

The above discussions are under the continuous-time semantics. This section
provides a constructive proof confirming the conjecture in [11] that language-
based timed opacity of TA is decidable under discrete-time semantics, i.e., the
time domain is N.

At first, we introduce several concepts under the discrete-time semantics. In
an integral timed word ω over Σ × N, all events have integral timestamps. An
integral timed language L is a set of integral timed words, i.e., L ⊆ (Σ × N)∗.
Given a TA A under discrete-time semantics, the generated and recognized timed
languages, denoted by L(A) and Lf (A), are integral timed languages. A function
Tick : (Σ ×N)∗ → (Σ ∪{�})∗ maps an integral timed word to an untimed word
over Σ ∪ {�}.

The basic proof idea is as follows. Under the discrete-time semantics, by
Definition 3, the LBTO problem is equivalent to the inclusion problem between
the projections of two integral timed languages. According to [22], every integral
timed language corresponds to an untimed Tick language, therefore we first
build an integral automaton A� accepting the integral timed language via the
Tick language. Then, based on A�, we construct a nondeterministic finite-state
automaton with ε-transitions (ε-NFA) accepting the projection of the integral
timed language via the Tick language. Therefore, we transform the LBTO problem
to the language inclusion problem of ε-NFA, which is decidable.

Definition 6 (Tick). Given an integral timed word ω = (σ1, t1)(σ2, t2)...
(σn, tn), ti ∈ N for 1 ≤ i ≤ n, Tick(ω) = � . . . �︸ ︷︷ ︸

t1

σ1 · · · � . . . �︸ ︷︷ ︸
ti−ti−1

σi · · · σn ∈

(Σ ∪ {�})∗.



The Opacity of Timed Automata 631

Hence, the number of � between two events in the untimed word Tick(ω)
is equal to the delay time length between two events in the timed word ω. For
example, let ω = (σ1, 2)(σ2, 3), we have Tick(ω) = ��σ1�σ2. We also extend
Tick to the integral timed languages, i.e., Tick(L) = {Tick(ω) | ω ∈ L}. We call
the untimed language Tick(L) as Tick language.

Therefore, we can transform the LBTO problem under discrete-time semantics
into the inclusion problem of the corresponding Tick languages.

Lemma 3. Given the LBTO problem w.r.t L(A) and Ls, we have PΣo
(L(A) ∩

Ls) ⊆ PΣo
(L(A) \ Ls) ⇔ Tick(PΣo

(L(A) ∩ Ls)) ⊆ Tick(PΣo
(L(A) \ Ls)).

In the following, we present a procedure to construct an ε-NFA recognizing
the Tick-language of the projection of the integral timed language of a given
timed automaton A.

According to [22], given a TA A, we build an integral automaton (IA) rec-
ognizing the integral timed language of A. The basic idea is to discretize the
real-valued clock valuations based on the concept of region equivalence [2,8].

Let κ : C → N be the ceiling function, i.e., κ(c) is the maximal integer
constant appearing in the clock constraints of clock c on transitions. For d ∈ R,
let �d� denote the integer part of d, and let frac(d) denote the fractional part.

Definition 7 (Region equivalence [2,8]). Two clock valuations v1, v2 : C →
R≥0 are region-equivalent, denoted by v1 ∼= v2 iff

1. ∀c ∈ C, either �v1(c)� = �v2(c)�, or v1(c) > κ(c) ∧ v2(c) > κ(c).
2. ∀c ∈ C, if v1(c) ≤ κ(c), then frac(v1(c)) = 0 iff frac(v2(c)) = 0.
3. ∀c1, c2 ∈ C, if v1(c1) ≤ κ(c1)∧v1(c2) ≤ κ(c2), then frac(v1(c1)) ≤ frac(v1(c2))

iff frac(v2(c1)) ≤ frac(v2(c2)).

A region [v] = {∀v′ : C → R≥0 | v′ ∼= v} is an equivalence class induced
by region equivalence ∼=, which denotes the set of all clock valuations v′ region-
equivalent to v. Given a TA A, we denote by Reg(A) the set of regions. According
to [2], Reg(A) is finite and |Reg(A)| is bounded by |C|! · 2|C| · ∏

c∈C(2κ(c) + 2).
Specifically, we denote by IReg(A) the set of regions only contain the integer
numbers, i.e. IReg(A) = {[v] | ∀c ∈ C, v(c) ∈ {0, 1, ..., κ(c) + 1}}. According to
region equivalence, there is only one element v in a region [v] ∈ IReg(A).

Definition 8 (Integral automata). Given a TA A = (Σ,Q,Q0, Qf , C,Δ), an
integral automaton (IA) A� = (Σ ∪ {�}, Q�, Q�

0 , Q�
f ,Δ�) can be constructed

as follows: the finite set of locations Q� = Q×IReg(A); the set of initial locations
Q�

0 = Q0 × {[0]}; the set of accepting locations Q�
f = Qf × IReg(A); and the

transition relation Δ� ⊆ Q� × Σ ∪ {�} × Q� includes σ-translations and �-
translations constructed based on transitions (q, σ, φ,R, q′) ∈ Δ:

• σ-translation: (q, [v]) σ−→ (q′, [v′]), s.t. ∃[v], [v′] ∈ IReg(A), v ∈ φ and v′ =
[R → 0]v.

• �-translation: (q, [v]) �−→ (q, [v′]), s.t. ∃[v], [v′] ∈ IReg(A), v′ = v + 1.
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A σ-translation represents a discrete jump from a symbolic state (location)
(q, [v]) to a symbolic state (q′, [v′]). It simulates the transition (q, σ, φ,R, q′) in
TA A but only triggered by the clock valuations containing integral assignments.
A �-translation simulates the one time-unit passing in a location of A. The gen-
erated and recognized languages, denoted by L(A�) and Lf (A�), are untimed
languages over Σ ∪ {�}.

The following lemma states that the corresponding IA A� recognizes the
integral timed language of TA A via the Tick language.

Lemma 4 (Proposition 10 in [22]). Given a TA A, there exists an IA A�

whose language Lf (A�) is equivalent to Tick(Lf (A)).

ε-NFA Construction. Based on A�, we can construct an ε-NFA A�
Σo

that can
accept the Tick language of the projection of the integral timed language of A,
i.e. Tick(PΣo

(Lf (A))), by the following two steps.

1. Replace all σ /∈ Σo with ε.
2. For all traces that end up in Q�

f and contain only ε-translations and �-
translations, construct a fresh set of ε-transitions Δε by

• Introducing a fresh location qs as the unique accepting location.
• For all q ∈ Q� s.t. q ∈ Q�

0 or exist (q′, σ, q) ∈ Δ� with σ ∈ Σo, if (1)
q ∈ Q�

f or (2) there exists a transition sequence from q to some location
q′′ ∈ Q�

f that only contains {ε,�}-transitions, then adding an ε-transition
(q, ε, qs) into Δε.

Therefore, we construct an ε-NFA A�
Σo

= (Σ�Σo
, Q�Σo

, Q�Σo

0 , Q�Σo

f ,Δ�Σo ),

where the alphabet Σ�Σo = Σo ∪{ε,�}; the set of locations Q�Σo = Q� ∪{qs};
the set of initial locations Q�Σo

0 = Q�
0 ; the set of accepting locations Q�Σo

f =

{qs}; and the set of transitions Δ�Σo = {(q, σ, q′) ∈ Δ� | σ ∈ Σo ∪ {�}} ∪
{(q, ε, q′) | (q, σ, q) ∈ Δ� ∧ σ /∈ Σo} ∪ Δε.

Lemma 5. Given a TA A, the language of the constructed ε-NFA A�
Σo

is equiv-
alent to the Tick language of the projection of the integral timed language of A,
i.e., Lf (A�

Σo
) = Tick(PΣo

(Lf (A))).

Given a TA A and a secret TA As under the discrete-time semantics, let Ls =
Lf (As), by Lemma 4 and Lemma 5, we can always build two ε-NFA A1 and A2

such that Lf (A1) = Tick(PΣo
(L(A)∩Ls)) and Lf (A2) = Tick(PΣo

(L(A)\Ls)),
since TA in the discrete-time semantics are closed under product and comple-
mentation [15]. Hence, by Lemma 3, the LBTO problem w.r.t the integral timed
languages L(A) and Ls can be transformed into the language inclusion problem
between ε-NFA A1 and A2, and the latter is decidable in PSPACE-complete [17].
Therefore, we have the following conclusion.

Theorem 3. The LBTO, ILTO, and CLTO of TA under the discrete-time seman-
tics are decidable.
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4.3 Sufficient Condition and Necessary Condition

Given a subclass of TA, denoted by X -automata, we present a sufficient condition
and a necessary condition on the decidability of opacity problems of X -automata.
According to the transformation in Fig. 3, LBTO is the strongest property, i.e.,
ILTO and CLTO can be reduced to LBTO. Hence, we consider the sufficient condi-
tion of LBTO. For the necessary condition, we consider the CLTO problem.

Sufficient Condition of LBTO. Given an X -automaton X, and a secret lan-
guage Ls which can be recognized by a secret X -automaton Xs, i.e., Ls =
Lf (Xs), by Definition 3, the LBTO problem asks if ∀ω ∈ L(X) ∩ Lf (Xs),∃ω′ ∈
L(X)\Lf (Xs) s.t. PΣo

(ω) = PΣo
(ω′) which is equivalent to asking if PΣo

(L(X)∩
Lf (Xs)) ⊆ PΣo

(L(X) \ Lf (Xs)).

Theorem 4 (Sufficient condition). If X -automata are closed under product,
complementation, and projection, then the LBTO of X -automata is decidable.

Proof. For the proof, we provide a decision procedure for the LBTO of X -automata
if X -automata are closed under product, complementation, and projection.

First, we transform X to an X -automaton X ′ by labeling all locations in X as
accepting locations. Thus, we have L(X) = Lf (X ′). Since X -automata are closed
under complementation, we can build the complemented X -automaton of Xs,
denoted by Xs. By the product operation, we can build two product X -automata
Ys = X ′ × Xs and Yns = X ′ × Xs. Therefore, Ys represents the secret part, i.e.,
Lf (Ys) = L(X) ∩ Lf (Xs), and Yns represents the non-secret part Lf (Yns) =
L(X)\Lf (Xs). Since X -automata are closed under projection PΣo

, we can build
two projection X -automata Y Σo

s and Y Σo
ns . We have Lf (Y Σo

s ) = PΣo
(Lf (Ys)) =

PΣo
(L(X) ∩ Lf (Xs)) and Lf (Y Σo

ns ) = PΣo
(Lf (Yns)) = PΣo

(L(X) \ Lf (Xs)).
For checking if Lf (Y Σo

s ) ⊆ Lf (Y Σo
ns ), we build a product X -automaton Z =

Y Σo
s ×Y Σo

ns and check the emptiness problem of Z. If Lf (Z) = ∅, then X is LBTO
w.r.t Xs and Σo. As shown in [2], the emptiness problem of timed automata is
decidable in PSPACE. Since X is a sub-class of timed automata, the emptiness
problem of X -automata is also decidable.

Therefore, the LBTO of X -automata is decidable if X -automata are closed
under product, complementation, and projection. ��

For instance, we check our sufficient condition on the subclasses mentioned
in Sect. 2.2. According to [12], RTA satisfy the sufficient condition, and we know
that the opacity of RTA is decidable [27,31]. However, ε-NTA and NTA are not
closed under complementation. Although DTA and ERA are closed under com-
plementation, they are not closed under projection. [11] shows that the opacity
problems of ε-NTA, NTA, DTA, and ERA are undecidable.

Necessary Condition of CLTO. Given an X -automaton X, and a secret sub-
set of locations Qs ⊆ Q, by Definition 5, the CLTO problem asks if ∀ω ∈
TrX(Q0, Qs),∃ω′ ∈ TrX(Q0, Q \ Qs) s.t. PΣo

(ω) = PΣo
(ω′).

The following lemma states that the universality problem of X -automata can
be reduced to an equivalent CLTO problem of X -automata.
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Lemma 6. Given an X -automaton X, there exists an X -automaton X ′ s.t. the
universality problem of X is equivalent to the CLTO problem of X ′.

Proof. Given an X -automaton X = (Σ,Q,Q0, Qf , C,Δ), the universality prob-
lem asks if Lf (X) = (Σ × R≥0)∗.

Similar to the proof of Lemma 2, we first introduce a new non-accepting
location q̃ and then build its complete X -automaton X ′ = (Σ, Q̃,Q0, Qf , C,Δ′)
with Q̃ = Q ∪ q̃, which satisfies Lf (X) = Lf (X ′) and L(X ′) = TrX′(Q0) =
(Σ × R≥0)∗.

Let the observable subset Σo = Σ and the secret location subsets Qs =
Q̃ \ Qf . By Definition 5, the CLTO problem of X ′ w.r.t Qs and Σo asks if

∀ω ∈ TrX′(Q0, Qs),∃ω′ ∈ TrX′(Q0, Q̃ \ Qs) s.t. PΣ(ω) = PΣ(ω′)

which is equivalent to

∀ω ∈ TrX′(Q0),∃ω′ ∈ TrX′(Q0, Q̃ \ Qs) s.t. PΣ(ω) = PΣ(ω′)
⇔∀ω ∈ L(A′),∃ω′ ∈ Lf (X ′) s.t. PΣ(ω) = PΣ(ω′)
⇔PΣ(L(X ′) ⊆ PΣ(Lf (X ′)).

By definition, for the same automaton, the recognized language is a subset of
the generated language, then PΣ(Lf (X ′)) ⊆ PΣ(L(X ′)). Therefore, it asks if
PΣ(Lf (X ′)) = PΣ(L(X ′)) which equals

PΣ(Lf (X ′)) = (Σ × R≥0)∗

⇔ PΣ(Lf (X)) = (Σ × R≥0)∗

⇔ Lf (X) = (Σ × R≥0)∗

Therefore, it is equivalent to the universality problem of X. ��
Theorem 5 (Necessary condition). If the CLTO of X -automata is decidable,
then the universality problem of X -automata is decidable.

Fig. 4. Left: the decidability and undecidability results on the opacity of timed
automata; Right: the sufficient condition and necessary condition for the decidability
of the opacity of sub-class X -automata.



The Opacity of Timed Automata 635

5 Discussion and Conclusion

In this paper, we systematically examined three opacity problems (LBTO, ILTO,
and CLTO) for TA with their transformations. We prove the undecidability of
these opacity problems for one-clock timed automata, addressing a gap in prior
work. Additionally, we provide a constructive proof confirming the decidability
of opacity for TA under discrete-time semantics, offering a general verification
algorithm. Finally, we propose a sufficient condition for LBTO and a necessary
condition for CLTO, elucidating the system properties guiding the design of an
opaque timed system.

In Fig. 4, the figure on the left side summarizes the decidability (for RTA) and
undecidability (gray part in the figure) results on the opacity of different classes
of timed automata; the figure on the right side illustrates the relation between the
opacity problem, the necessary condition, and the sufficient condition. Hence, one
question is if there exists a subclass X -automata such that RTA ⊂ X -automata
and the opacity of X -automata is decidable. Another interesting question is
whether we can find some tighter sufficient conditions and necessary conditions
on the decidability of timed opacity or even a sufficient and necessary condition.
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7. Badouel, É., Bednarczyk, M.A., Borzyszkowski, A.M., Caillaud, B., Darondeau,
P.: Concurrent secrets. Discret. Event. Dyn. Syst. 17(4), 425–446 (2007). https://
doi.org/10.1007/s10626-007-0020-5

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Bérard, B., Gastin, P., Petit, A.: On the power of non-observable actions in timed
automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
255–268. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 22

10. Bortz, A., Boneh, D.: Exposing private information by timing web applications. In:
Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW
2007, pp. 621–628. ACM (2007). https://doi.org/10.1145/1242572.1242656

11. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H., Atiquzza-
man, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 21–30.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 3

12. Dima, C.: Real-time automata. J. Autom. Lang. Comb. 6(1), 3–23 (2001). https://
doi.org/10.25596/jalc-2001-003

13. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of various
notions of opacity. Discret. Event Dyn. Syst. 25(4), 531–570 (2015). https://doi.
org/10.1007/s10626-014-0196-4

14. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Gritzalis, D.,
Jajodia, S., Samarati, P. (eds.) CCS 2000, pp. 25–32. ACM (2000). https://doi.
org/10.1145/352600.352606

15. Gruber, H., Holzer, M., Kiehn, A., König, B.: On timed automata with discrete
time – structural and language theoretical characterization. In: De Felice, C.,
Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 272–283. Springer, Heidelberg
(2005). https://doi.org/10.1007/11505877 24

16. Han, X., Zhang, K., Li, Z.: Verification of strong k-step opacity for discrete-event
systems. In: CDC 2022, pp. 4250–4255. IEEE (2022). https://doi.org/10.1109/
CDC51059.2022.9993023

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

18. Jacob, R., Lesage, J., Faure, J.: Overview of discrete event systems opacity: models,
validation, and quantification. Annu. Rev. Control. 41, 135–146 (2016). https://
doi.org/10.1016/j.arcontrol.2016.04.015

19. Jancar, J., et al.: “They’re not that hard to mitigate”: what cryptographic library
developers think about timing attacks. In: S&P 2022, pp. 632–649. IEEE (2022).
https://doi.org/10.1109/SP46214.2022.9833713

20. Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3),
496–503 (2011). https://doi.org/10.1016/j.automatica.2011.01.002

21. Liu, S., Yin, X., Zamani, M.: On a notion of approximate opacity for discrete-time
stochastic control systems. In: ACC 2020, pp. 5413–5418. IEEE (2020). https://
doi.org/10.23919/ACC45564.2020.9147235

22. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: LICS 2003, pp. 198–207. IEEE Computer Society (2003).
https://doi.org/10.1109/LICS.2003.1210059

23. Saboori, A., Hadjicostis, C.N.: Notions of security and opacity in discrete event
systems. In: CDC 2007, pp. 5056–5061. IEEE (2007). https://doi.org/10.1109/
CDC.2007.4434515

https://doi.org/10.1007/s10626-007-0020-5
https://doi.org/10.1007/s10626-007-0020-5
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/3-540-60922-9_22
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1007/s10626-014-0196-4
https://doi.org/10.1007/s10626-014-0196-4
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1007/11505877_24
https://doi.org/10.1109/CDC51059.2022.9993023
https://doi.org/10.1109/CDC51059.2022.9993023
https://doi.org/10.1016/j.arcontrol.2016.04.015
https://doi.org/10.1016/j.arcontrol.2016.04.015
https://doi.org/10.1109/SP46214.2022.9833713
https://doi.org/10.1016/j.automatica.2011.01.002
https://doi.org/10.23919/ACC45564.2020.9147235
https://doi.org/10.23919/ACC45564.2020.9147235
https://doi.org/10.1109/LICS.2003.1210059
https://doi.org/10.1109/CDC.2007.4434515
https://doi.org/10.1109/CDC.2007.4434515


The Opacity of Timed Automata 637

24. Saboori, A., Hadjicostis, C.N.: Verification of infinite-step opacity and complexity
considerations. IEEE Trans. Autom. Control 57(5), 1265–1269 (2012). https://doi.
org/10.1109/TAC.2011.2173774

25. Saboori, A., Hadjicostis, C.N.: Verification of initial-state opacity in security appli-
cations of discrete event systems. Inf. Sci. 246, 115–132 (2013). https://doi.org/
10.1016/j.ins.2013.05.033

26. Wang, L., Zhan, N.: Decidability of the initial-state opacity of real-time automata.
In: Jones, C., Wang, J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid
Systems. LNCS, vol. 11180, pp. 44–60. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01461-2 3

27. Wang, L., Zhan, N., An, J.: The opacity of real-time automata. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 37(11), 2845–2856 (2018). https://doi.org/
10.1109/TCAD.2018.2857363

28. Wu, Y., Lafortune, S.: Comparative analysis of related notions of opacity in cen-
tralized and coordinated architectures. Discret. Event Dyn. Syst. 23(3), 307–339
(2013). https://doi.org/10.1007/s10626-012-0145-z

29. Yin, X., Lafortune, S.: A new approach for the verification of infinite-step and
k-step opacity using two-way observers. Automatica 80, 162–171 (2017). https://
doi.org/10.1016/j.automatica.2017.02.037

30. Yin, X., Zamani, M., Liu, S.: On approximate opacity of cyber-physical systems.
IEEE Trans. Autom. Control 66(4), 1630–1645 (2021). https://doi.org/10.1109/
TAC.2020.2998733

31. Zhang, K.: State-based opacity of real-time automata. In: Castillo-Ramirez, A.,
Guillon, P., Perrot, K. (eds.) 27th IFIP WG 1.5 International Workshop on Cellular
Automata and Discrete Complex Systems, AUTOMATA 2021. OASIcs, vol. 90, pp.
12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/OASIcs.AUTOMATA.2021.12

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/TAC.2011.2173774
https://doi.org/10.1109/TAC.2011.2173774
https://doi.org/10.1016/j.ins.2013.05.033
https://doi.org/10.1016/j.ins.2013.05.033
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1007/s10626-012-0145-z
https://doi.org/10.1016/j.automatica.2017.02.037
https://doi.org/10.1016/j.automatica.2017.02.037
https://doi.org/10.1109/TAC.2020.2998733
https://doi.org/10.1109/TAC.2020.2998733
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.12
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.12
http://creativecommons.org/licenses/by/4.0/

	The Opacity of Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Words, Timed Languages and Timed Automata
	2.2 Expressiveness and Decidability of Timed Automata

	3 Opacity Problems of Timed Automata
	3.1 Language-Based and Location-Based Timed Opacity
	3.2 Transformation Between LBTO, ILTO and CLTO

	4 Decidability and Undecidability of Timed Opacity Problems
	4.1 Undecidability of Opacity Problems of OTA
	4.2 Decidability in the Discrete-Time Semantics
	4.3 Sufficient Condition and Necessary Condition

	5 Discussion and Conclusion
	References


