
CauMon: An Informative Online Monitor
for Signal Temporal Logic

Zhenya Zhang1(B) , Jie An2,3(B) , Paolo Arcaini3(B) ,
and Ichiro Hasuo3(B)

1 Kyushu University, Fukuoka, Japan
zhang@ait.kyushu-u.ac.jp

2 Institute of Software, Chinese Academy of Sciences,
Beijing, China

anjie@iscas.ac.cn
3 National Institute of Informatics, Tokyo, Japan

{arcaini,hasuo}@nii.ac.jp

Abstract. In this paper, we present a tool for monitoring the traces of
cyber-physical systems (CPS) at runtime, with respect to Signal Tempo-
ral Logic (STL) specifications. Our tool is based on the recent advances of
causation monitoring, which reports not only whether an executing trace
violates the specification, but also how relevant the increment of the trace
at each instant is to the specification violation. In this way, it can deliver
more information about system evolution than classic online robust mon-
itors. Moreover, by adapting two dynamic programming strategies, our
implementation significantly improves the efficiency of causation moni-
toring, allowing its deployment in practice. The tool is implemented as
a C++ executable and can be easily adapted to monitor CPS in different
formalisms. We evaluate the efficiency of the proposed monitoring tool,
and demonstrate its superiority over existing robust monitors in terms
of the information it can deliver about system evolution.

Keywords: online monitoring · Signal Temporal Logic · dynamic
programming

1 Introduction

Cyber-physical systems (CPS), that embed cyber technologies into physical sys-
tems, have been widely deployed in safety-critical domains, such as transporta-
tion, healthcare, power and energy. Due to their safety-critical nature, the behav-
iors of CPS require formal verification to guarantee their satisfaction to formal
specifications that are usually expressed in temporal logics, e.g., Signal Tem-
poral Logic (STL) [20]. Given an STL specification, monitoring (a.k.a. runtime
verification) [2] is an effective approach for checking whether a trace of system
execution satisfies the specification.

Monitoring can be achieved either offline or online. In STL monitoring, an
offline monitor can report a real value (called robustness) that indicates how
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 286–304, 2025.
https://doi.org/10.1007/978-3-031-71177-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_18&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-71177-0_18

CauMon: An Informative Online Monitor for Signal Temporal Logic 287

robustly an STL formula ϕ is satisfied or violated by a complete execution trace,
based on the STL robust semantics [9,13]. By contrast, an online monitor tar-
gets partial execution traces at runtime, reporting the satisfaction of an STL
formula ϕ by the partial trace so far at each time instant. Due to the lack of a
complete trace, a typical online monitor, e.g., the robust monitor in [6], reports a
robustness interval [[R]L, [R]U] telling the possibly reachable values of the robust-
ness under any suffix trace, where [R]L and [R]U are the lower and upper bounds
respectively. In this way, the satisfaction of ϕ can be inferred from the computed
robustness interval, e.g., ϕ is violated if [R]U is negative.

Fig. 1. An illustrative exam-
ple of online robust moni-
toring and causation moni-
toring of STL formula ϕ :
�[0,45](�[0,5]v < 10).

Online robust monitoring [6] suffers from the
information masking problem [24,26,27], as visu-
alized by the example in Fig. 1. The specification
in this example requires that, during [0, 45], the
speed v of a car should never be over 10 for 5
time units. The top plot reports a trace v that
violates the system specification. When using the
classic online monitor [6] reported in the middle
plot, the value of [R]U keeps on decreasing and
becomes negative at b = 10. It then reaches the
minimum value around b = 14 and stagnates at
that value in the remaining of the monitoring.
As a result, the system evolution is not faithfully
reflected by the monitor. For instance, the monitor
does not deliver that the system actually recovers
(i.e., v < 10) at b = 20 and that the status v > 10
persisting for more than 5 time units happens once
again from b = 25.

Causation monitoring [26] emerges to tackle the information masking issue
of robust monitoring. As shown in the bottom plot of Fig. 1, at each instant b, an
online causation monitor returns [R]� (called a violation causation distance) and
[R]⊕ (called a satisfaction causation distance), that respectively reflect how far
the trace value at b is from being a causation to the violation and the satisfaction
of the specification. For instance, [R]� at b = 12 is negative, which implies that
the trace value at b = 12 is considered as a causation to the violation of the
partial trace, because the status v > 10 that has been persisting for more than 5
time units continues at b = 12. At b = 20, [R]� becomes positive, which implies
that the trace value at b = 20 is no more a causation to the violation, because v
becomes less than 10 at b = 20. From Fig. 1, we can see that compared to robust
monitoring, causation monitoring can reflect more information about system
evolution, such as the recovery of the system at b = 20 and the recurrence of the
status v > 10 persisting for more than 5 time units from b = 25.

Contributions. In this paper, we present a tool CauMon, that implements an
efficient online causation monitoring algorithm of STL. Compared to the plain
monitoring algorithm [26] derived directly from the definition of causation mon-
itoring, our algorithm features the use of two dynamic programming strategies,

288 Z. Zhang et al.

by which we can significantly reduce redundant computation of the causation
distances during monitoring of system executions. We adopt dynamic program-
ming for two purposes: first, we record and reuse the intermediate monitoring
results of the sub-formulas using several worklists for each of the sub-formulas,
such that computational cost is only spent for incremental results, not for exist-
ing ones; moreover, we adapt a sliding window algorithm [18] to accelerate the
computation of monitoring results in the presence of nested temporal operators.

We implement CauMon in C++, and it can be compiled to an executable
that can be easily interfaced with CPS in different formalisms. We demonstrate
the advantages of CauMon in informativeness, by comparing it with the existing
online robust monitor in [6]. Moreover, we also evaluate the efficiency of CauMon,
by comparing it with the plain causation monitor derived from the definition of
causation monitoring directly, and also the online robust monitor [6]. The exper-
imental results show that CauMon can indeed deliver more information about
system evolution compared to the robust monitor; moreover, while the plain
implementation of causation monitoring is not applicable to handling nested
temporal operators in practice, CauMon can significantly reduce the monitoring
time costs and achieve comparable efficiency with the robust monitor.

Related Work. Online monitoring is an approach that monitors system exe-
cutions at runtime, and different approaches have been proposed for different
temporal logics, such as LTL [4,5], MTL [14,19,25], and STL [6,7,15,16,23].
For online monitoring of STL, most of existing approaches [6,7,15,16] and
tools [1,8,22,23] are based on its robust semantics and provide a quantitative
value or interval to characterize the system runtime status. Consequently, these
approaches suffer more or less from the issue of information masking. In [27],
we proposed a reset mechanism that resets a monitor whenever it detects the
recovery of specification violation. However, [27] does not propose new semantics
and so it does not improve informativeness of monitors between two resets.

2 Preliminaries

2.1 Signal Temporal Logic

Let T ∈ R+ be a positive real. A signal (i.e., a trace of system execution) is a
function v : [0, T] → R

d , where T is the time horizon, d ∈ N+ is the dimension.
In practice, each signal dimension concerns with a signal variable that has a
certain physical meaning, e.g., speed, RPM of a car. We fix a set Var of variables
and assume that a signal v is spatially bounded by a hyper-rectangle Ω, i.e., for
any t ∈ [0, T], v(t) ∈ Ω.

Signal temporal logic (STL) [20] can express desired properties of hybrid
systems. We review the syntax and robust semantics [9,13] of STL.

Definition 1 (STL Syntax). In STL, the atomic propositions α and the for-
mulas ϕ are respectively defined as follows:

α ::≡ f(w1, . . . , wK) > 0 ϕ ::≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | �Iϕ | �Iϕ | ϕ UI ϕ

CauMon: An Informative Online Monitor for Signal Temporal Logic 289

Here f is a K-ary function f : RK → R, w1, . . . , wK ∈ Var, and I is a closed
non-singular interval in R≥0, i.e., I = [l, u], where l, u ∈ R and l < u. �,�
and U are temporal operators, which are known as always, eventually and until,
respectively. The always operator � and eventually operator � are two special
cases of the until operator U , where �Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬�I¬ϕ. Other
common connectives such as ∨,→ are introduced as syntactic sugar: ϕ1 ∨ ϕ2 ≡
¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (STL Robust Semantics). Let v be a signal, ϕ be an STL
formula and τ ∈ R+ be an instant. The robustness R(v, ϕ, τ) ∈ R ∪ {+∞,−∞}
of v w.r.t. ϕ at τ is defined by induction on the construction of formulas, as
follows,

R(v, α, τ) := f(v(τ)) R(v,¬ϕ, τ) := −R(v, ϕ, τ)
R(v, ϕ1 ∧ ϕ2, τ) := min (R(v, ϕ1, τ),R(v, ϕ2, τ))
R(v,�Iϕ, τ) := inft∈τ+I R(v, ϕ, t) R(v,�Iϕ, τ) := supt∈τ+I R(v, ϕ, t)

R(v, ϕ1 UI ϕ2, τ) := supt∈τ+I min
(
R(v, ϕ2, t), inft′∈[τ,t) R(v, ϕ1, t

′)
)

where τ + [l, u] denotes the shifted interval [l + τ, u + τ].

The Boolean semantics of STL, i.e., whether (v, τ) |= ϕ or not, can be inferred
from the quantitative robust semantics in Definition 2, namely, if R(v, ϕ, τ) > 0,
it implies (v, τ) |= ϕ; and if R(v, ϕ, τ) < 0, it implies (v, τ) �|= ϕ.

2.2 Online Robust Monitoring of STL

Online monitoring concerns the satisfaction of a partial signal v0:b : [0, b] → R
d

w.r.t. an STL formula ϕ. We define a completion of v0:b as a signal v : [0, T] → R
d

(b ≤ T) such that ∀t ∈ [0, b],v(t) = v0:b(t). A completion v can be written as
the concatenation of v0:b with a suffix signal vb:T , i.e., v = v0:b · vb:T .

Definition 3 (Online Robust Monitor [6]). Let v0:b be a partial signal, and
let ϕ be an STL formula. We denote by Rα

max and Rα
min the possible maximum and

minimum bounds of the robustness R(v, α, τ)1. Then, an online robust monitor
returns a sub-interval [R](v0:b, ϕ, τ) ⊆ [Rα

min, R
α
max] at instant b, which is defined

as follows, by induction on the construction of formulas.

[R](v0:b, α, τ) :=

{[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b]

[
Rα
min, R

α
max

]
otherwise

[R](v0:b,¬ϕ, τ) := −[R](v0:b, ϕ, τ)

[R](v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R](v0:b, ϕ1, τ), [R](v0:b, ϕ2, τ)

)

[R](v0:b,�Iϕ, τ) := inft∈τ+I

(
[R](v0:b, ϕ, t)

)

[R](v0:b, ϕ1 UI ϕ2, τ) := supt∈τ+I min
(
[R](v0:b, ϕ2, t), inft′∈[τ,t) [R](v0:b, ϕ1, t

′)
)

1 R(v, α, τ) is bounded because of the bound Ω of v. In practice, if Ω is unknown, we
just need to set Rα

max and Rα
min to be ∞ and −∞ respectively.

290 Z. Zhang et al.

Here, f is defined as in Definition 1, and the arithmetic rules over inter-
vals I = [l, u] are defined as follows: −I := [−u,−l] and min(I1, I2) :=
[min(l1, l2),min(u1, u2)].

We denote by [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) the upper and lower bounds
of [R](v0:b, ϕ, τ) respectively. Intuitively, this interval [R](v0:b, ϕ, τ) indicates the
set of robustness values possibly reached by the completion of v0:b, under any
suffix signal vb:T . This interval can be used to derive a 3-valued verdict for
a given v0:b, that signifies the satisfaction of v0:b w.r.t. the specification ϕ: if
[R]L(v0:b, ϕ, τ) > 0, it implies true, i.e., v0:b satisfies ϕ; if [R]U(v0:b, ϕ, τ) < 0, it
implies false, i.e., v0:b violates ϕ; otherwise, it returns unknown.

3 Overview of Causation Monitoring

As mentioned in §1, the information masking issue of online robust monitors
has been identified as a problem in [24,26,27]. The problem arises from the
monotonicity of online robust monitors, i.e., during evolution of the signal
v0:b, [R]U(v0:b, ϕ, τ) monotonically decreases and [R]L(v0:b, ϕ, τ) monotonically
increases. The formal statement of this problem can be found in [26].

Online Causation Monitoring. Causation monitoring is proposed in [26] as
a solution to the problem. Specifically, instead of monitoring robustness that
indicates whether a partial trace violates the specification, it monitors whether
the increment of the trace at each instant is the causation to the violation
of the specification. Here, the definition of causation follows the online trace
diagnostics [3,27] that returns a (violation or satisfaction) epoch, which is a set
of signal segments that sufficiently triggers the violation or satisfaction of the
partial signal. Intuitively, an epoch can be considered as an explanation of a
violation or satisfaction; the formal definition of epoch can be found in [3,27].
Having the trace diagnostic result at each instant, causation monitoring aims to
report such a verdict: if the current instant b of v0:b is included in the violation
epoch, it is considered as a violation causation; if b is included in the satisfaction
epoch, it is considered as a satisfaction causation; otherwise, it is irrelevant.

The causation monitor proposed in [26] achieves this goal as follows: at each
instant, it computes two quantities [R]� (v0:b, ϕ, τ) and [R]⊕ (v0:b, ϕ, τ), that
respectively indicate the distances of the current instant b from being a viola-
tion causation and a satisfaction causation. The formal definition of causation
distances [R]� (v0:b, ϕ, τ) and [R]⊕ (v0:b, ϕ, τ) are presented in Definition 4.

Definition 4 (Online Causation Monitor [26]). Let v0:b be a partial signal
and ϕ be an STL formula. At an instant b, an online causation monitor returns
a violation causation distance [R]� (v0:b, ϕ, τ) and a satisfaction causation dis-
tance [R]⊕ (v0:b, ϕ, τ), as defined in Table 1.

The causation verdict, regarding whether b is a causation or not, can be
inferred by the results of the online causation monitor in Definition 4, as follows:

CauMon: An Informative Online Monitor for Signal Temporal Logic 291

Table 1. The definitions of violation and satisfaction causation distances

[R]� (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
max otherwise

[R]� (v0:b, ¬ϕ, τ) := −[R]⊕ (v0:b, ϕ, τ)

[R]� (v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R]� (v0:b, ϕ1, τ) , [R]� (v0:b, ϕ2, τ)

)
[R]� (v0:b, �Iϕ, τ) := inft∈τ+I

(
[R]� (v0:b, ϕ, t)

)

[R]� (v0:b, ϕ1 UI ϕ2, τ) := inft∈τ+I

⎛
⎜⎝max

⎛
⎜⎝min

(
inft′∈[τ,t) [R]� (v0:b, ϕ1, t

′)

[R]� (v0:b, ϕ2, t)

)

[R]U(v0:b, ϕ1 UI ϕ2, τ)

⎞
⎟⎠

⎞
⎟⎠

[R]⊕ (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
min otherwise

[R]⊕ (v0:b, ¬ϕ, τ) := −[R]� (v0:b, ϕ, τ)

[R]⊕ (v0:b, ϕ1 ∧ ϕ2, τ) := max

⎛
⎝min

(
[R]⊕ (v0:b, ϕ1, τ) , [R]L(v0:b, ϕ2, τ)

)
min

(
[R]L(v0:b, ϕ1, τ), [R]⊕ (v0:b, ϕ2, τ)

)
⎞
⎠

[R]⊕ (v0:b, �Iϕ, τ) := supt∈τ+I

(
min

(
[R]⊕ (v0:b, ϕ, t) , [R]L(v0:b, �Iϕ, τ)

))

[R]⊕ (v0:b, ϕ1 UI ϕ2, τ) := supt∈τ+I

⎛
⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎜⎜⎜⎝

min

⎛
⎜⎝

supt′∈[τ,t) [R]⊕ (v0:b, ϕ1, t
′)

inft′∈[τ,t) [R]L(v0:b, ϕ1, t
′)

[R]L(v0:b, ϕ2, t)

⎞
⎟⎠

min

(
inft′∈[τ,t) [R]L(v0:b, ϕ1, t

′)

[R]⊕ (v0:b, ϕ2, t)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

• if [R]� (v0:b, ϕ, τ) < 0, then b is a violation causation;
• if [R]⊕ (v0:b, ϕ, τ) > 0, then b is a satisfaction causation;
• otherwise, i.e., [R]� (v0:b, ϕ, τ) > 0 and [R]⊕ (v0:b, ϕ, τ) < 0, b is irrelevant.

Below, we use an example to illustrate how online causation monitor works.

Example 1. Consider the example in Fig. 1. As indicated by the robust mon-
itor, the specification is violated by the signal after b = 10. By online trace
diagnostics (see [27]), at b = 19, we can obtain a violation epoch {〈v < 10, t〉 |
t ∈ [5, 19]}, which implies that the violation so far is caused by the signal values
v during [5, 19]. Since b = 19 is included in this epoch, b is then considered as a
violation causation. On the other hand, we can also compute the violation cau-
sation distance [R]� (v0:b, ϕ, 0) = −1 < 0 by Definition 4, which also indicates
that b is a violation causation.

Similarly, at b = 23, we obtain an epoch {〈v < 10, t〉 | t ∈ [5, 20]}, in which
b = 23 is not included, so b = 23 is irrelevant. This is also shown by computing the
causation distances [R]� (v0:b, ϕ, 0) = 2 > 0 and [R]⊕ (v0:b, ϕ, 0) = Rα

min < 0.
Note that the result of causation monitoring is not monotonic, e.g., while

b = 19 is considered as a violation causation, b = 23 is not. This feature is
clearly shown by the visualized result of causation monitoring in Fig. 1.

Relationship with Robust Monitors. As indicated by Fig. 1 and Example 1,
the causation monitor is not monotonic, and thus it delivers more information

292 Z. Zhang et al.

about system evolution. We refer to [26] for a more detailed explanation. Below,
Lemma 1 states that the online causation monitor in Definition 4 refines the
online robust monitor in Definition 3, in the sense that the monitoring results
of robust monitors can be inferred from that of causation monitors. In other
words, the information delivered by causation monitors is a superset of that can
be delivered by classic robust monitors.

Lemma 1. The causation monitor in Definition 4 refines the classic online
robust monitor in Definition 3, in the sense that the monitoring results of the
robust monitor can be reconstructed from the results of the causation monitor,
as follows:

[R]U(v0:b, ϕ, τ) = inf
t∈[0,b]

[R]� (v0:t, ϕ, τ) , [R]L(v0:b, ϕ, τ) = sup
t∈[0,b]

[R]⊕ (v0:t, ϕ, τ)

4 Efficient Causation Monitoring

In [26], a straightforward way of synthesizing an online causation monitor has
been provided that follows Definition 4. However, the synthesized monitor may
not be sufficiently efficient to be deployed in practice, due to the high computa-
tional complexity when handling nested temporal operators.

Example 2. Consider the specification ϕ ≡ �[0,45](�[0,5]v < 10) in Fig. 1. For
convenience, we name the sub-formulas of ϕ as follows: ϕ′ ≡ �[0,5](v < 10), α ≡
(v < 10). Consider the computation of [R]� (v0:b, ϕ, 0) that contains nested
temporal operators. According to Definition 4, we need to compute as follows:

[R]� (v0:b, ϕ, 0) = inft∈[0,45] [R]� (v0:b, ϕ
′, t)

= inft∈[0,45]

(
inft′∈[t,t+5]

(
max

(
[R]� (v0:b, α, t′) , [R]U(v0:b, α, t′)

)))

During this computation, for a fixed t′, [R]� (v0:b, α, t′) and [R]U(v0:b, α, t′) are
repeatedly computed as long as it holds that t′ ∈ [t, t+5] for any t ∈ [0, 45]. This
results in numerous redundant computations, which can significantly diminish
the efficiency of causation monitoring.

We introduce two dynamic programming strategies, i.e., intermediate result
recording and sliding window, for accelerating causation monitoring.

4.1 Intermediate Result Recording

Our efficient causation monitoring algorithm is presented in Algorithm 1. The
basic idea of the algorithm is to record the intermediate monitoring results, by
maintaining several worklists for each of the sub-formulas of an STL formula ϕ,
so as to avoid redundant computations.

CauMon: An Informative Online Monitor for Signal Temporal Logic 293

Algorithm 1 Efficient online causation monitoring
Require: a partial signal v0:b, an STL formula ϕ
1: for ψ ∈ SF(ϕ) do
2: for t ∈ Eva(ϕ, 0)[ψ] do
3: Cau�[ψ](t) ← Rα

max, Cau
⊕[ψ](t) ← Rα

min

4: RobU[ψ](t) ← Rα
max, RobL[ψ](t) ← Rα

min

5: for b ∈ [0, T] do
6: UpdateCau(v0:b, ϕ, 0) � monitoring at runtime

7: function UpdateCau(v0:b, ψ, τ)
8: switch ψ do
9: case α � atomic propositions

10: if b ∈ Eva(α) then

11: Cau�[ψ](t) ←
{

f(v0:b(b)) if t = b

+∞ otherwise

12: Cau⊕[ψ](t) ←
{

f(v0:b(b)) if t = b

−∞ otherwise

13: case ¬ϕ � negations
14: UpdateCau(v0:b, ϕ, τ) � recursive call
15: Cau�[ψ] ← −Cau⊕[ϕ]
16: Cau⊕[ψ] ← −Cau�[ϕ]

17: case ϕ1 ∧ ϕ2 � conjunctions
18: UpdateCau(v0:b, ϕ1, τ); UpdateCau(v0:b, ϕ2, τ) � recursive call
19: UpdateRob(v0:b, ϕ1, τ); UpdateRob(v0:b, ϕ2, τ) � see [6]
20: Cau�[ψ] ← min(Cau�[ϕ1],Cau

�[ϕ2])
21: Cau⊕[ψ] ← max

(
min(Cau⊕[ϕ1],Rob

L[ϕ2]), min(RobL[ϕ1],Cau
⊕[ϕ2])

)
22: case �Iϕ � always operators
23: UpdateCau(v0:b, ϕ, τ) � recursive call
24: UpdateRob(v0:b, �Iϕ, τ) � see [6]
25: Cau�[ψ] ← SlideMin(Cau�[ϕ],Trans(I)) � call Algorithm 2
26: Cau⊕[ψ] ← min

(
RobL[ϕ], −SlideMin(−Cau⊕[ϕ],Trans(I))

)

Sub-formulas and Evaluation periods. Given an STL formula ϕ, the sub-
formula set SF(ϕ) of ϕ is defined as follows (see an example in Example 2):

SF(α) := {α} SF(¬ϕ) := {¬ϕ} ∪ SF(ϕ)
SF(ϕ1 ∧ ϕ2) := {ϕ1 ∧ ϕ2} ∪ SF(ϕ1) ∪ SF(ϕ2) SF(�Iϕ) := {�Iϕ} ∪ SF(ϕ)

At the beginning of Algorithm 1, for each sub-formula ψ ∈ SF(ϕ), we initialize
four worklists, including Cau�[ψ] and Cau⊕[ψ] that record the violation and
satisfaction causation distances, RobU[ψ] and RobL[ψ] that record the upper and
lower robustness bounds.

Each of these four lists is defined over the evaluation period Eva(ψ) of each
ψ, that is, intuitively, the time interval that includes all the instants t such that
[R]� (v0:b, ψ, t) is needed for the computation of [R]� (v0:b, ϕ, 0) (see Defini-
tion 4, and it also holds for satisfaction distances). Formally, given ψ ∈ SF(ϕ),

294 Z. Zhang et al.

the evaluation period is computed as follows. First, Eva[ϕ, 0], a set that includes
the evaluation periods of all the sub-formulas ψ′ ∈ SF(ϕ), is computed recur-
sively as follows:

Eva[α, t] := {〈α, t〉} Eva[¬ϕ, t] := {〈¬ϕ, t〉} ∪ Eva[ϕ, t]
Eva[ϕ1 ∧ ϕ2, t] := {〈ϕ1 ∧ ϕ2, t〉} ∪ Eva[ϕ1, t] ∪ Eva[ϕ2, t]
Eva[�Iϕ, t] := {〈�Iϕ, t〉} ∪ ⋃

t′∈t+I Eva[ϕ, t′]

Then, the evaluation period Eva[ϕ, 0](ψ) (we denote as Eva(ψ) for simplicity)
of ψ is defined as Eva(ψ) = {t | 〈ψ, t〉 ∈ Eva[ϕ, 0]}.

Example 3. Consider the sub-formulas ϕ, ϕ′ and α of the formula ϕ in Exam-
ple 2. The evaluation periods of these sub-formulas can be computed as follows.

• First, Eva[ϕ, 0] = {〈ϕ, 0〉} ∪ ⋃
t′∈[0,45]{〈ϕ′, t′〉} ∪ ⋃

t′′∈[0,50]{〈ϕ′, t′′〉};
• Then, we can obtain the evaluation periods for ϕ, ϕ′ and α, respectively as

follows: Eva(ϕ) = 0,Eva(ϕ′) = [0, 45],Eva(α) = [0, 50].

Monitoring Algorithm. During the growth of partial signal v0:b, Algorithm 1
monitors v0:b by calling the function UpdateCau at each instant, which
updates the worklists Cau�[ψ] and Cau⊕[ψ], such that Cau�[ψ](t) equals to
[R]� (v0:b, ψ, t) and Cau⊕[ψ](t) equals to [R]⊕ (v0:b, ψ, t), as defined in Defi-
nition 4. Unlike the plain monitoring algorithm in Example 2, when updating
Cau�[ψ] and Cau⊕[ψ], Algorithm 1 relies on the worklists of the sub-formulas of
ψ that are already available rather than computing the causation distances of
the sub-formulas from scratch, thereby saving monitoring time significantly. We
illustrate this process in Example 4.

As shown in Algorithm 1, UpdateCau is defined recursively based on the
structure of an STL formula. In Algorithm 1, we only show a part of the oper-
ators; other operators can be derived by the STL syntax (Definition 1) and the
presented operators.

• The updates for α and ¬ϕ exactly follow Definition 4;
• The update for ϕ1 ∧ ϕ2 requires not only the worklists of causation distances

of sub-formulas, but also the worklists of robustness bounds of sub-formulas
(according to Definition 4), so it calls the auxiliary function UpdateRob
(see Algorithm 2 in [6]) to update the worklists RobL[ϕ1] and RobL[ϕ2] of
robustness bounds of sub-formulas. The function UpdateRob was originally
introduced in [6]. It updates the worklists of robustness bounds in a similar
way to what UpdateCau does for causation distances, i.e., when updating
the worklists of robustness bounds for a formula ψ, it also relies on the work-
lists of robustness bounds for its sub-formulas, rather than computing from
scratch.

• The update for �Iϕ requires to compute the minimum of Cau�[ϕ] over the
time window t + I, for each t ∈ Eva(�Iϕ). To efficiently update the list, we
adapt a sliding window algorithm [18] (elaborated on in §4.2) that, given a list

CauMon: An Informative Online Monitor for Signal Temporal Logic 295

Algorithm 2 Sliding window algorithm
Require: a list A = {a1, . . . , aN}, a window ω = [l, u] (l, u ∈ N)
Ensure: a list result = {minj∈[i+l,i+u] aj | i ∈ {1, . . . , N − u}}

1: function SlideMin(A, ω)
2: Q ← empty double-ended queue
3: result ← ∅ � initialize the list of results
4: PushBack(Q, l + 1)
5: for i ∈ {l + 2, . . . , N} do
6: if i ≥ u + 1 then � should give outputs
7: result ← result ∪ {aFront(Q)} � record result

8: if ai < ai−1 then � the back is not possible in result
9: PopBack(Q) � remove back

10: while ai < aBack(Q) do � recursive check
11: PopBack(Q) � remove back

12: PushBack(Q, i) � ai possibly in result
13: if i > Front(Q) + u − l then � front is no more in window
14: PopFront(Q) � remove front

15: return result

{a1, . . . , aN} and an index window [l, u] (l, u ∈ N), computes the minimum
minj∈[i+l,i+u] aj over the window [i + l, i + u] for each i ∈ {1, . . . , N − u}. In
Algorithm 1, Trans(I) transforms a time interval I to the index representation
of a window, simply by considering the sampling frequency2.

4.2 Sliding Window Algorithm

The sliding window algorithm [18] is given in Algorithm 2, which computes the
local minimum minj∈[i+l,i+u] aj over the span [i+l, i+u], for each i ∈ {1, . . . , N−
u}. This is yet another dynamic programming strategy, by using a double-ended
queue Q (Line 2) to record the comparisons that have been performed between
the elements in Q, and thus eliminate redundant comparisons.

Algorithm 2 takes as input a list {a1, . . . , aN} and a window [l, u]. Initially,
the window is placed to contain the elements a1+l, . . . , a1+u, and the index l +1
is pushed to the back of Q (Line 4). Then it enters a loop to traverse the list
(Line 5). Inside the loop, first, it checks the condition whether a result should be
reported, i.e., the elements in the initial window have been traversed (Line 6).
From which that on, it reports the list element with the index at the front of Q
at each loop (Line 7). Then, it recursively removes the indexes aBack(Q) at the
back of Q, if the element ai of the current index i is greater than the aBack(Q)

(Line 8-11), and pushes the current index i to the back of Q (Line 12). If the

2 In practice, the continuous time domain of signals (see §2.1) needs to be discretized,
by sampling the signal with a certain frequency. In this way, a signal can be repre-
sented as a list, which is the format required in Algorithm 2.

296 Z. Zhang et al.

index at the front of Q is already out of the scope of the window, then it is also
removed (Line 14).

Note that, the index of local minimum over the window is always stored at the
front of Q, and that is why it is returned at each loop in Line 7 of Algorithm 2.
In this way, the comparisons that have been performed between list elements are
reflected by the state of Q, thus reducing redundancies significantly.

Example 4. Consider the specification in Example 2. According to Algo-
rithm 1, our computation of [R]� (v0:b, ϕ, 0) at b = 19 relies on updating the
worklists for the sub-formulas SF(ϕ) of ϕ. As shown in Table 2, we need to main-
tain five worklists for the sub-formulas of ϕ. Each worklist is defined over the
evaluation period of the sub-formula, as computed in Example 3.

Due to recursive call of UpdateCau and UpdateRob, our algorithm first
updates the worklist Cau�[α] and RobU[α] for α, as shown by the correspond-
ing rows in Table 2. Then, RobU[ϕ′] is updated by taking the local maximum
over each window [0, 5] (by UpdateRob), and Cau�[ϕ′] is updated based on
Cau�[α] and RobU[ϕ′] (by Algorithm 1). Finally, Cau�[ϕ] can be updated based
on Cau�[ϕ′].

Table 2. The worklists for computing [R]� (v0:b, ϕ, 0) at b = 19

b (time) 0 · · · 5 · · · 10 · · · 14 15 · · · 19 20 · · · 45 · · · 50

Cau�[α] Rα
max · · · Rα

max · · · Rα
max · · · Rα

max R
α
max · · · -1 Rα

max · · · Rα
max · · · Rα

max

RobU[α] 10 · · · 0 · · · -4 · · · -3.5 -3 · · · -1 Rα
max · · · Rα

max · · · Rα
max

RobU[ϕ′] 10 · · · 0 · · · -3 · · · -1 Rα
max · · · Rα

max R
α
max · · · Rα

max

Cau�[ϕ′]Rα
max · · · Rα

max Rα
max -1 Rα

max Rα
max R

α
max · · · Rα

max

Cau�[ϕ] -1

Compare our algorithm with the naive one in Example 2. In our algorithm,
the computations of [R]� (v0:b, α, t) and [R]U(v0:b, α, t) for any specific t both
happen only once; then, they are recorded in the worklists and when they are
used to update the worklists of other formulas, they can be directly read from the
worklist, which does not take new computation costs. Therefore, our algorithm
avoids the repeated computation of [R]� (v0:b, α, t) and [R]U(v0:b, α, t), as shown
in the monitoring process in Example 2.

5 Demonstration of CauMon

We implemented CauMon in C++, which can be easily compiled to interface with
CPS implemented in any formalism. In this section, we showcase the usage of
CauMon, by compiling it to be a MATLAB API, based on the MEX functions
of MATLAB. A code snippet for monitoring ϕ in Fig. 1 is shown as follows.

CauMon: An Informative Online Monitor for Signal Temporal Logic 297

1 signal = ’speed ’;

2 spec = ’alw_ [0 ,45](ev_ [0,5](speed[t]<10))’;

3 tau = 0;

4 while ∼end()

5 trace = get_trace ();

6 [vio_d , sat_d] = cau_mon(signal , trace , spec , tau);

7 end

The function cau mon serves as the interface to call our causation monitor,
which requires four arguments, namely, a trace, a list of signal names, an STL
specification and a non-negative τ . Their formats are required as follows:

• trace is a high-dimensional array. Its first row is an array of time stamps;
from second row on, each row denotes a signal concerned with the STL;

• signal is a string that denotes a list of signals that correspond to each row
of trace. Multiple signals can be separated by commas.

• spec is a string that denotes an STL formula. The syntax of spec follows the
standard in Breach [8].

• tau is a non-negative real, as τ defined in Definition 4.

During the monitoring of system execution, the program iteratively calls cau mon
with an updated trace, which is obtained by a function get trace. The function
get trace requires an interface with the system being monitored. Typically, such
an interface is provided by a CPS simulator; for example, in the case of Simulink
models, one can use the function sim to obtain the output of Simlink models.
At each instant, cau mon can return a violation causation distance vio d and a
satisfaction causation distance sat d, exactly as defined in Definition 4.

6 Experimental Evaluation

We introduce the experimental evaluation of our tool CauMon. For the purpose
of comparison, we also integrated two baseline monitors, namely, RobM (the
online robust monitor from [6]) and PCauM (the plain implementation of online
causation monitor from Definition 4) into our tool, as an option that can be
specified by users. Our tool is publicly available in our Github repository3.

6.1 Experiment Setting

Benchmarks. To evaluate the efficiency of our proposed monitoring algorithm,
we collect traces from four MATLAB Simulink models that are commonly-used
in the CPS community [10–12,21].
Automatic Transmission (AT) implements a transmission controller of an auto-
motive system. It has been widely-used recently [10–12] as a benchmark of CPS
testing and monitoring. It contains 64 blocks in total, including a stateflow chart

3 https://github.com/choshina/EfficientCausationMonitor.

https://github.com/choshina/EfficientCausationMonitor

298 Z. Zhang et al.

that represents the transmission control logic. The outputs of AT, including
speed and RPM, reflect the state of the automotive system. The specifications
that AT are expected to hold are listed as follows:

• ϕAT
1 ≡ �[0,30](speed < 110): speed should be always low;

• ϕAT
2 ≡ �[0,29](speed > 70 → �[0,1](speed > 80)): there should be a drastic

speed change from 70 to 80;
• ϕAT

3 ≡ �[0,27](speed > 50 → �[1,3](RPM < 3000)): whenever speed is higher
than 50, RPM should be below 3000 in 3 s;

• ϕAT
4 ≡ �[0,29](speed < 100) ∨ �[29,30](speed > 65): there should not be a

drastic speed change at the end of the simulation;

Abstract Fuel Control (AFC) is a powertrain control system released by Toy-
ota [17] and has been widely used as a benchmark in CPS community [10–12,21].
The system takes external inputs including engine speed and pedal angle, and
adjusts the air-to-fuel ratio to ensure the performance of the powertrain system.
The output of AFC includes the air-to-fuel ratio AF and a reference value AFref.
The specifications of AFC are listed as follows:

• ϕAFC
1 ≡ �[10,50](|AF − AFref| < 0.1): the deviation of AF from AFref should

always be small;
• ϕAFC

2 ≡ �[10,48.5]�[0,1.5] (|AF − AFref| < 0.08): a large deviation should not
last for too long;

Fig. 2. Comparison between CauMon and RobM, in terms of the information provided
by different monitors. In each of the sub-figures, the top plot is the signals, the middle
plot is the result of online robust monitors [6], and the bottom plot is the result of
online causation monitors.

Neural Network Controller (NN). This is a magnetic levitation system that has
been used as a benchmark in [10,12,21,29]. It takes one input signal, Ref ∈ [1, 3],
which is the reference for the position Pos of a magnet suspended above an
electromagnet. The specification of NN is a complicated one:

CauMon: An Informative Online Monitor for Signal Temporal Logic 299

• ϕNN
1 ≡ �[0,18](¬close → reach), where close ≡ |Pos−Ref | ≤ ρ+ a · |Ref |,

and reach ≡ �[0,2](�[0,1](close)): the position should approach the reference
position in some seconds when they are far. Here, a = 0.04 and ρ = 0.004.

Free Floating Robot (FFR) models a robot moving in a 2D space [28,30]. It takes
as input the four boosters of the robot, and outputs four signals that are the
position in terms of coordinate values x, y. The specification of FFR is as follows:

• ϕFFR
1 ≡ ¬(�[0,5](�[0,2](x ∈ [1.5, 1.7] ∧ y ∈ [1.5, 1.7]))): it requires the robot

not to stay in an area for at least 2 s.

Experiment Design. For each specification, we first generate 10 signals by
running the Simulink models with random inputs, and then for each signal, we
apply the three monitors and compare the total time they spent in monitoring
the signal. To handle the fluctuation of monitoring time due to the environmental
noises, we repeat each monitoring process for five times and report the average
monitoring time as the result. While some monitors may be not efficient and not
terminated within a reasonable time budget, we set 5000 s as a timeout.

Our experiments are conducted on Amazon EC2 c4.2xlarge instances
(2.9 GHz Intel Xeon E5-2666 v3, 15 GB RAM).

6.2 Evaluation

Efficacy of CauMon. To demonstrate the supriority of CauMon compared to
RobM in terms of informativeness, we show two plots in Fig. 2, which depict the
signals produced by Simulink models and the monitoring results of CauMon and
RobM. Due to the page limit, examples of other specifications are presented in
our Github repository. We can observe that, while the upper robustness curves
in these three plots provided by RobM are always monotonic, the violation cau-
sation distances provided by CauMon are not monotonic, thus they can deliver
more information about system evolution. For instance, in Fig. 2b, the spikes
shown in the monitoring result of CauMon reflect that the deviation between AF
and AFref is greater than the threshold 0.1 in ϕAFC

1 for more than once. How-
ever, this information can not be provided by the monotonic curve of the upper
robustness from the monitoring result given by RobM.

Efficiency of CauMon. The experimental results are presented in Table 3. Each
sub-table reports the results of monitoring 10 signals for the corresponding spec-
ification. The first three columns of each sub-table report the total monitoring
time of the three monitors, and the last two columns report the comparison
between the proposed CauMon and the two baseline monitors RobM and Cau-
Mon, computed by ΔA = (CauMon−A)/A, where A is either PCauM or RobM.

First, by the comparison between PCauM and CauMon, we observe that in
our experiments, CauMon always outperforms PCauM, with an improvement of
at least 17.5% (in ϕAT

4). In particular, in those complex specifications that have
nested temporal operators, such as ϕAT

2 , ϕAT
3 and ϕNN

1 , PCauM can take extremely

300 Z. Zhang et al.

long time to monitor the traces: for ϕAT
2 and ϕAT

3 , it takes around 1900 s; for ϕNN
1

that has nested operators of three levels, it even gets timeout. In the case of ϕAT
2

and ϕAT
3 , each instant of the signals takes about 1900

30×100 = 0.63 seconds, which
is 63 times longer than the sampling period (0.01 s for AT) of the traces. This
performance can lead to severe delays if PCauM is deployed in practice, and the
main reason is, as shown in Example 2, because of the redundant computations
of intermediate results. In contrast, CauMon does not suffer from the problem
and provides a monitoring performance that allows its usage in a real-world
setting, possibly even a synchronous monitoring setting.

The performance of PCauM is severely subject to the complexity of the spec-
ification. In the problems that have simpler formulas (e.g., ϕAT

1 , ϕAFC
1), PCauM is

not very slow. However, for specifications that have nested operators (e.g., ϕAT
2 ,

ϕAT
3 , ϕNN

1), PCauM becomes not feasible in practice. By contrast, CauMon suffers
much less from this issue. Even for complex specifications, CauMon is still very
efficient and its performance is always comparable with RobM.

By the comparison between RobM and CauMon, we observe that, the perfor-
mance of CauMon is at the same magnitude of RobM, and so its performance

Table 3. Experimental results of the three monitors RobM, PCauM and CauMon Time
is reported in seconds.

ϕAT
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.34 0.31 0.20 −41.8 −35.5

#2 0.32 0.31 0.19 −40.2 −38.7

#3 0.30 0.3 0.18 −40.4 −40.0

#4 0.33 0.31 0.19 −40.6 −38.7

#5 0.39 0.34 0.23 −41.6 −32.4

#6 0.30 0.30 0.18 −40.1 −40.0

#7 0.32 0.31 0.19 −40.7 −38.7

#8 0.34 0.32 0.20 −41.0 −37.5

#9 0.31 0.31 0.19 −39.9 −38.7

#10 0.33 0.32 0.20 −40.9 −37.5

ϕAT
2 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.55 1972.82 1.99 +28.4 −99.9

#2 1.50 1907.76 1.87 +24.9 −99.9

#3 1.47 1932.85 1.87 +27.5 −99.9

#4 1.48 1914.46 1.84 +24.8 −99.9

#5 1.50 1902.60 1.88 +25.8 −99.9

#6 1.48 1887.34 1.86 +25.7 −99.9

#7 1.45 1891.06 1.82 +25.7 −99.9

#8 1.44 1847.76 1.82 +26.2 −99.9

#9 1.58 1865.24 1.91 +21.0 −99.9

#10 1.41 1855.63 1.81 +28.2 −99.9

ϕAT
3 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.63 2007.99 2.26 +39.1 −99.9

#2 1.64 2015.69 2.27 +38.2 −99.9

#3 1.63 1990.24 2.13 +30.5 −99.9

#4 1.59 1926.94 2.20 +38.2 −99.9

#5 1.62 1985.16 2.20 +35.8 −99.9

#6 1.64 2023.44 2.27 +38.4 −99.9

#7 1.57 1979.15 1.99 +27.0 −99.9

#8 1.57 1894.74 2.16 +37.9 −99.9

#9 1.63 1991.59 2.11 +29.2 −99.9

#10 1.61 1997.21 2.16 +33.9 −99.9

ϕAT
4 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.46 0.57 0.47 +1.5 −17.5

#2 0.41 0.53 0.42 +2.4 −20.8

#3 0.45 0.57 0.46 +2.2 −19.3

#4 0.41 0.53 0.42 +2.3 −20.8

#5 0.43 0.55 0.44 +2.1 −20.0

#6 0.44 0.56 0.45 +1.4 −19.6

#7 0.42 0.54 0.43 +1.1 −20.4

#8 0.41 0.54 0.42 +1.4 −22.2

#9 0.43 0.55 0.43 +1.0 −21.8

#10 0.46 0.57 0.46 +0.5 −19.3

ϕAFC
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.0079 0.0095 0.0056 −29.8 −41.1

#2 0.0066 0.0088 0.0048 −27.1 −45.5

#3 0.0063 0.0086 0.0047 −25.1 −45.3

#4 0.0061 0.0086 0.0047 −23.3 −45.3

#5 0.0061 0.0086 0.0047 −23.1 −45.3

#6 0.0061 0.0086 0.0046 −23.8 −46.5

#7 0.0061 0.0086 0.0047 −23.7 −45.3

#8 0.0061 0.0086 0.0047 −23.6 −45.3

#9 0.0061 0.0086 0.0047 −23.6 −45.3

#10 0.0062 0.0087 0.0047 −24.1 −46.0

ϕAFC
2 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.0084 0.7033 0.0087 +3.1 −98.8

#2 0.0072 0.7041 0.0078 +8.0 −98.9

#3 0.0069 0.7017 0.0077 +12.0 −98.9

#4 0.0066 0.7041 0.0076 +15.0 −98.9

#5 0.0067 0.702 0.0077 +15.1 −98.9

#6 0.0066 0.7058 0.0076 +15.0 −98.9

#7 0.0067 0.7041 0.0077 +14.8 −98.9

#8 0.0067 0.7053 0.0077 +16.1 −98.9

#9 0.0067 0.7052 0.0077 +15.4 −98.9

#10 0.0067 0.7051 0.0078 +15.8 −98.9

ϕNN
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 1.25 t/o 1.89 +51.4 −99.9

#2 1.22 t/o 1.86 +52.8 −99.9

#3 1.23 t/o 1.89 +53.4 −99.9

#4 1.22 t/o 1.88 +53.7 −99.9

#5 1.23 t/o 1.88 +52.7 −99.9

#6 1.22 t/o 1.88 +53.8 −99.9

#7 1.23 t/o 1.88 +53.0 −99.9

#8 1.24 t/o 1.89 +52.8 −99.9

#9 1.24 t/o 1.88 +52.3 −99.9

#10 1.23 t/o 1.86 +51.4 −99.9

ϕFFR
1 RobM PCauM CauMon

CauMon stat. (%)

Δ RobMΔ PCauM

#1 0.053 850.1 0.085 +60.7 −99.9

#2 0.049 857.6 0.080 +62.3 −99.9

#3 0.049 857.1 0.080 +63.0 −99.9

#4 0.051 822.0 0.082 +61.7 −99.9

#5 0.049 813.5 0.080 +62.8 −99.9

#6 0.050 822.0 0.081 +63.3 −99.9

#7 0.051 867.8 0.083 +61.4 −99.9

#8 0.047 809.0 0.077 +62.3 −99.9

#9 0.047 809.6 0.077 +64.0 −99.9

#10 0.047 809.4 0.077 +63.1 −99.9

CauMon: An Informative Online Monitor for Signal Temporal Logic 301

is comparable with RobM. While in some cases CauMon is not as fast as RobM,
the performance difference is not very large. This is acceptable, regarding that
our CauMon can provide more information about system evolution than RobM.
There also happens that CauMon is faster than RobM, with simple specifications
that have no nested temporal operators, such as ϕAT

1 and ϕAFC
1 . This is because

monitoring simple specifications, like �Iα, mainly needs the causation distance
lists Cau�[α] and Cau⊕[α] of atomic proposition α, and by Defs. 3 and 4, Cau�[α]
and Cau⊕[α] have simpler shape than RobU[α] and RobL[α].

7 Conclusion and Future Work

We propose an efficient approach for online causation monitoring. Our approach
features two dynamic programming strategies, namely, the use of causation dis-
tance lists that record intermediate results, and the use of sliding window algo-
rithms that accelerate the causation computation of temporal operators. Exper-
iments show that, in terms of efficiency, our approach significantly outperforms
the plain causation monitor in [26], and is comparable with the existing online
robust monitors that deliver less information about system evolution than ours.

As future work, we would like to explore the application of the proposed
monitors for system behavior analysis. For instance, by causation monitoring,
we can obtain the information about when a cause of the specification violation
happens, and this can be used for fault analysis such as localization and repair.

Acknowledgments. Z. Zhang is supported by JSPS KAKENHI Grant No.
JP23K16865 and No. JP23H03372. P. Arcaini is supported by Engineerable AI Tech-
niques for Practical Applications of High-Quality Machine Learning-based Systems
Project (Grant Number JPMJMI20B8), JST-Mirai. J. An and I. Hasuo are sup-
ported by ERATO HASUO Metamathematics for Systems Design Project (No. JPM-
JER1603), JST, Funding Reference number: 10.13039/501100009024 ERATO.

Data Availability Statement. All relevant data that support the findings of this
paper are available in Zenodo with the identifier https://doi.org/10.5281/zenodo.
12518433.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

https://doi.org/10.5281/zenodo.12518433
https://doi.org/10.5281/zenodo.12518433

302 Z. Zhang et al.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bartocci, E., Ferrère, T., Manjunath, N., Ničković, D.: Localizing faults in
Simulink/Stateflow models with STL. In: Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS Week),
pp. 197–206. HSCC 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3178126.3178131

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

6. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

7. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

8. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

10. Ernst, G., et al.: ARCH-COMP 2021 category report: falsification with valida-
tion of results. In: Frehse, G., Althoff, M. (eds.) 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21). EPiC Series
in Computing, vol. 80, pp. 133–152. EasyChair (2021). https://doi.org/10.29007/
xwl1

11. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: Frehse, G.,
Althoff, M. (eds.) 7th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74, pp.
140–152. EasyChair (2020). https://doi.org/10.29007/trr1

12. Ernst, G., et al.: ARCH-COMP 2022 category report: falsification with Ubounded
resources. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 204–221. EasyChair
(2022). https://doi.org/10.29007/fhnk

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/fhnk
https://doi.org/10.1016/j.tcs.2009.06.021

CauMon: An Informative Online Monitor for Signal Temporal Logic 303

14. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

15. Jakšić, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničkovié, D.: From
signal temporal logic to FPGA monitors. In: Proceedings of the 2015 ACM/IEEE
International Conference on Formal Methods and Models for Codesign, pp. 218–
227. MEMOCODE 2015, IEEE Computer Society, USA (2015). https://doi.org/
10.1109/MEMCOD.2015.7340489

16. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of STL with edit distance. Formal Methods Syst. Des. 53, 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

17. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pp. 253–262. HSCC 2014, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2562059.2562140

18. Lemire, D.: Streaming maximum-minimum filter using no more than three com-
parisons per element. Nordic J. Comput. 13(4), 328–339 (2006)

19. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: Sankaranarayanan, S., Sharygina, N. (eds.)
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, vol. 13994, pp. 473–491. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-30820-8 28

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

21. Menghi, C., et al.: ARCH-COMP23 category report: Falsification. In: Frehse, G.,
Althoff, M. (eds.) Proceedings of 10th International Workshop on Applied Verifi-
cation of Continuous and Hybrid Systems (ARCH23). EPiC Series in Computing,
vol. 96, pp. 151–169. EasyChair (2023). https://doi.org/10.29007/6nqs

22. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75454-1 22

23. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

24. Selyunin, K., et al.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 17

25. Ulus, D.: Online monitoring of metric temporal logic using sequential networks.
arXiv preprint arXiv:1901.00175 (2019)

26. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online causation monitoring of signal
temporal logic. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 62–84.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-
37706-8 4

27. Zhang, Z., Arcaini, P., Xie, X.: Online reset for signal temporal logic monitoring.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 4421–4432 (2022).
https://doi.org/10.1109/TCAD.2022.3197693

https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.29007/6nqs
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-319-63387-9_17
http://arxiv.org/abs/1901.00175
https://doi.org/10.1007/978-3-031-37706-8_4
https://doi.org/10.1007/978-3-031-37706-8_4
https://doi.org/10.1109/TCAD.2022.3197693

304 Z. Zhang et al.

28. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte Carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

29. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

30. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using monte Carlo tree search guided by QB-robustness. In: Silva, A.,
Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 595–618. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8 29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-81685-8_29
http://creativecommons.org/licenses/by/4.0/

	CauMon: An Informative Online Monitor for Signal Temporal Logic
	1 Introduction
	2 Preliminaries
	2.1 Signal Temporal Logic
	2.2 Online Robust Monitoring of STL

	3 Overview of Causation Monitoring
	4 Efficient Causation Monitoring
	4.1 Intermediate Result Recording
	4.2 Sliding Window Algorithm

	5 Demonstration of CauMon
	6 Experimental Evaluation
	6.1 Experiment Setting
	6.2 Evaluation

	7 Conclusion and Future Work
	References

